| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | CHOMAGE-TRIM-NATIONAL | Chômage, taux de chômage par sexe et âge (sens BIT) (1975-) | 2025-12-25 | 2025-12-27 |
Chômage, taux de chômage par sexe et âge (sens BIT) (1975-)
Data - INSEE
Info
Données sur l’emploi
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | CHOMAGE-TRIM-NATIONAL | Chômage, taux de chômage par sexe et âge (sens BIT) (1975-) | 2025-12-25 | 2025-12-27 |
| insee | CNA-2014-EMPLOI | Emploi intérieur, durée effective travaillée et productivité horaire | 2025-12-25 | 2025-12-27 |
| insee | DEMANDES-EMPLOIS-NATIONALES | Demandeurs d'emploi inscrits à Pôle Emploi | 2025-12-25 | 2025-12-27 |
| insee | EMPLOI-BIT-TRIM | Emploi, activité, sous-emploi par secteur d’activité (sens BIT) | 2025-12-25 | 2025-12-27 |
| insee | EMPLOI-SALARIE-TRIM-NATIONAL | Estimations d'emploi salarié par secteur d'activité | 2025-12-25 | 2025-12-27 |
| insee | TAUX-CHOMAGE | Taux de chômage localisé | 2025-12-25 | 2025-12-27 |
| insee | TCRED-EMPLOI-SALARIE-TRIM | Estimations d'emploi salarié par secteur d'activité et par département | 2025-12-25 | 2025-12-27 |
Data on employment
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| bls | jt | NA | NA | NA |
| bls | la | NA | NA | NA |
| bls | ln | NA | NA | NA |
| eurostat | nama_10_a10_e | Employment by A*10 industry breakdowns | 2025-12-25 | 2025-12-27 |
| eurostat | nama_10_a64_e | National accounts employment data by industry (up to NACE A*64) | 2025-12-25 | 2025-12-27 |
| eurostat | namq_10_a10_e | Employment A*10 industry breakdowns | 2025-05-24 | 2025-12-27 |
| eurostat | une_rt_m | Unemployment by sex and age – monthly data | 2025-12-25 | 2025-12-27 |
| oecd | ALFS_EMP | Employment by activities and status (ALFS) | 2024-04-16 | 2025-05-24 |
| oecd | EPL_T | Strictness of employment protection – temporary contracts | 2025-12-26 | 2023-12-10 |
| oecd | LFS_SEXAGE_I_R | LFS by sex and age - indicators | 2025-12-26 | 2024-04-15 |
| oecd | STLABOUR | Short-Term Labour Market Statistics | 2025-12-26 | 2025-01-17 |
LAST_UPDATE
Code
`CHOMAGE-TRIM-NATIONAL` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| LAST_UPDATE | Nobs |
|---|---|
| 2025-11-13 | 13496 |
| 2019-08-14 | 5634 |
INDICATEUR
Code
`CHOMAGE-TRIM-NATIONAL` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| INDICATEUR | Indicateur | Nobs |
|---|---|---|
| CTTXC | Taux de chômage | 4872 |
| CTCHC | Nombre de chômeurs | 4572 |
| HALO | Personnes dans le halo autour du chômage | 3918 |
| CTTC15 | Part de chômeurs dans la population 15 ans et plus | 2983 |
| TXCHLODU | Taux de chômage de longue durée | 1884 |
| CHLODU | Nombre de chômeurs de longue durée | 157 |
| HALO_1 | Personnes dans le halo autour du chômage : inactifs faisant des démarches actives de recherche d'emploi mais non disponibles | 157 |
| HALO_2 | Personnes dans le halo autour du chômage : inactifs disponibles mais ne faisant pas de démarche active de recherche d'emploi | 157 |
| HALO_3 | Personnes dans le halo autour du chômage : inactifs souhaitant travailler mais non disponibles et ne faisant pas de démarche active de recherche d'emploi | 157 |
| PCONTR1 | Part des chômeurs parmi les participants au marché du travail de 15 à 64 ans | 91 |
| PCONTR2 | Part des personnes au chômage ou dans le halo parmi les participants au marché du travail de 15 à 64 ans | 91 |
| PCONTR3 | Part des personnes contraintes sur leur offre de travail parmi les participants au marché du travail de 15 à 64 ans | 91 |
TIME_PERIOD
Code
`CHOMAGE-TRIM-NATIONAL` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()AGE
Code
`CHOMAGE-TRIM-NATIONAL` %>%
left_join(AGE, by = "AGE") %>%
group_by(AGE, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| AGE | Age | Nobs |
|---|---|---|
| 25-49 | De 25 à 49 ans | 4047 |
| 00- | Ensemble | 3460 |
| 50- | 50 ans et plus | 3460 |
| 00-24 | Moins de 25 ans | 2832 |
| 15-64 | De 15 à 64 ans | 1488 |
| 15-24 | De 15 à 24 ans | 1215 |
| 50-64 | De 50 à 64 ans | 1215 |
| 15- | 15 ans et plus | 471 |
| 55-64 | De 55 à 64 ans | 471 |
| SO | Sans objet | 471 |
NATURE
Code
`CHOMAGE-TRIM-NATIONAL` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| NATURE | Nature | Nobs |
|---|---|---|
| VALEUR_ABSOLUE | Valeur absolue | 8026 |
| TAUX | Taux | 6756 |
| PROPORTION | Proportion | 4348 |
SEXE
Code
`CHOMAGE-TRIM-NATIONAL` %>%
left_join(SEXE, by = "SEXE") %>%
group_by(SEXE, Sexe) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| SEXE | Sexe | Nobs |
|---|---|---|
| 0 | Ensemble | 7082 |
| 1 | Hommes | 6024 |
| 2 | Femmes | 6024 |
UNIT_MULT
Code
`CHOMAGE-TRIM-NATIONAL` %>%
group_by(UNIT_MULT) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| UNIT_MULT | Nobs |
|---|---|
| 0 | 11104 |
| 3 | 8026 |
REF_AREA
Code
`CHOMAGE-TRIM-NATIONAL` %>%
group_by(REF_AREA) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| REF_AREA | Nobs |
|---|---|
| FR-D976 | 11060 |
| FM | 8070 |
Personnes dans le Halo du chômage
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(grepl("halo", TITLE_FR)) %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Halo du chomage
Ensemble
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(IDBANK %in% c("010605056",
"010605048",
"010605049",
"010605050")) %>%
select(AGE, TITLE_FR, TIME_PERIOD, OBS_VALUE) %>%
mutate(OBS_VALUE = OBS_VALUE %>% as.numeric,
TITLE_FR = TITLE_FR %>% gsub("\\(en milliers\\) - France hors Mayotte - Données CVS", "", .),
TITLE_FR = TITLE_FR %>% gsub("Personnes dans le halo autour du chômage - ", "", .)) %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR, linetype = TITLE_FR)) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.6, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 9000, 500),
labels = dollar_format(accuracy = 1, prefix = "", su = " K")) +
ylab("Halo du Chômage (en milliers)") + xlab("")
Inactifs
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR %in% c("CHLODU", "HALO_1", "HALO_2", "HALO_3"),
REF_AREA == "FR-D976") %>%
quarter_to_date %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
mutate(Indicateur = gsub("Personnes dans le halo autour du chômage : ", "", Indicateur)) %>%
arrange(date) %>%
select(date, OBS_VALUE, INDICATEUR, Indicateur) %>%
ggplot() + ylab("Halo du Chômage (en milliers)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur, linetype = Indicateur)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.55, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 9000, 200),
labels = dollar_format(accuracy = 1, prefix = ""),
limits = c(0, 2000))
Nombre de chômeurs
Tous
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTCHC",
AGE == "00-",
SEXE == "0") %>%
quarter_to_date %>%
left_join(REF_AREA, by = "REF_AREA") %>%
ggplot() + theme_minimal() + ylab("Nombre de chômeurs") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Ref_area)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.15),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(0, 3000, 500),
labels = dollar_format(accuracy = 1, pre = "", su = " K"))
Taux de chômage
Tous
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
AGE == "00-",
SEXE == "0") %>%
quarter_to_date %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(OBS_VALUE = OBS_VALUE/100) %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Ref_area)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.15),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 20, 1),
labels = percent_format(accuracy = 1)) +
geom_hline(yintercept = 0.05, linetype = "dashed")
1990-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
AGE == "00-",
SEXE == "0") %>%
quarter_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(OBS_VALUE = OBS_VALUE/100) %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Ref_area)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.15),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 20, 1),
labels = percent_format(accuracy = 1))
Genre
Tous
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
AGE == "00-") %>%
quarter_to_date %>%
left_join(SEXE, by = "SEXE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Sexe, linetype = Sexe)) +
scale_color_manual(values = c("black", "red", "blue")) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.3),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 20, 1),
labels = percent_format(accuracy = 1))
2005-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
AGE == "00-") %>%
quarter_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
left_join(SEXE, by = "SEXE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Sexe, linetype = Sexe)) +
scale_color_manual(values = c("black", "red", "blue")) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 20, .5),
labels = percent_format(accuracy = .1))
2010-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
AGE == "00-") %>%
quarter_to_date %>%
filter(date >= as.Date("2010-01-01")) %>%
left_join(SEXE, by = "SEXE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Sexe, linetype = Sexe)) +
scale_color_manual(values = c("black", "red", "blue")) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 20, .5),
labels = percent_format(accuracy = .1))
Nombre de chômeurs
All
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR %in% c("CTCHC", "CHLODU"),
SEXE == "0",
AGE == "00-24") %>%
quarter_to_date %>%
left_join(REF_AREA, by = "REF_AREA") %>%
ggplot() + theme_minimal() + ylab("Nombre de chômeurs") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE*1000, color = Ref_area)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.8, 0.88),
legend.title = element_blank()) +
scale_y_continuous(breaks = 1000*seq(100, 1100, 50),
labels = dollar_format(pre = ""))
1990-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTCHC",
SEXE == "0",
AGE == "00-24") %>%
quarter_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
ggplot() + theme_minimal() + ylab("Nombre de chômeurs") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE*1000, color = Ref_area)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.4, 0.88),
legend.title = element_blank()) +
scale_y_continuous(breaks = 1000*seq(100, 1100, 50),
labels = dollar_format(pre = ""))
Age (Tous)
Tous
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0") %>%
quarter_to_date %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.12, 0.88),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 5),
labels = percent_format(accuracy = 1))
2005-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0") %>%
quarter_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 2),
labels = percent_format(accuracy = 1))
2010-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0") %>%
quarter_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 2),
labels = percent_format(accuracy = 1))
2017-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0") %>%
quarter_to_date %>%
filter(date >= as.Date("2017-01-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = "6 months",
labels = date_format("%b %y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 2),
labels = percent_format(accuracy = 1))
Age (sauf - de 25 ans)
Tous
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0",
AGE != "00-24") %>%
quarter_to_date %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.15, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 1),
labels = percent_format(accuracy = 1),
limits = c(0, 0.13))
2005-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0",
AGE != "00-24") %>%
quarter_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 1),
labels = percent_format(accuracy = 1))
2010-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0",
AGE != "00-24") %>%
quarter_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 1),
labels = percent_format(accuracy = 1))
2017-
Code
`CHOMAGE-TRIM-NATIONAL` %>%
filter(INDICATEUR == "CTTXC",
REF_AREA == "FR-D976",
SEXE == "0",
AGE != "00-24") %>%
quarter_to_date %>%
filter(date >= as.Date("2017-04-01")) %>%
left_join(AGE, by = "AGE") %>%
ggplot() + theme_minimal() + ylab("Taux de chômage (%)") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Age)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.9, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 40, 1),
labels = percent_format(accuracy = 1))