source | dataset | .html | .RData |
---|---|---|---|
insee | TAUX-CHOMAGE | 2025-01-05 | 2025-01-05 |
Taux de chômage localisé
Data - INSEE
Info
Données sur l’emploi
source | dataset | .html | .RData |
---|---|---|---|
insee | CHOMAGE-TRIM-NATIONAL | 2025-01-07 | 2025-01-05 |
insee | CNA-2014-EMPLOI | 2024-06-07 | 2024-12-29 |
insee | DEMANDES-EMPLOIS-NATIONALES | 2025-01-07 | 2025-01-05 |
insee | EMPLOI-BIT-TRIM | 2024-06-07 | 2025-01-05 |
insee | EMPLOI-SALARIE-TRIM-NATIONAL | 2025-01-07 | 2025-01-05 |
insee | TAUX-CHOMAGE | 2025-01-05 | 2025-01-05 |
insee | TCRED-EMPLOI-SALARIE-TRIM | 2025-01-05 | 2025-01-05 |
LAST_UPDATE
Code
`TAUX-CHOMAGE` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-12-19 | 19025 |
TITLE_FR
Code
`TAUX-CHOMAGE` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
REF_AREA
Code
`TAUX-CHOMAGE` %>%
group_by(REF_AREA) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TIME_PERIOD
Code
`TAUX-CHOMAGE` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Taux de chômage localisé
Code
`TAUX-CHOMAGE` %>%
%>%
quarter_to_date filter(date == as.Date("2019-07-01")) %>%
mutate(OBS_VALUE = OBS_VALUE %>% as.numeric) %>%
select(REF_AREA, TITLE_FR, OBS_VALUE) %>%
arrange(-OBS_VALUE) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Carte
2019
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(date == as.Date("2019-10-01"),
grepl("D", REF_AREA)) %>%
mutate(value = as.numeric(OBS_VALUE),
depts_code = substr(REF_AREA, 2, 3)) %>%
select(depts_code, value) %>%
right_join(france, by = "depts_code") %>%
ggplot(aes(long, lat, group = group, fill = value/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 20, 2),
name = "Chômage") +
labs(x = "", y = "", title = "") +
theme_minimal() + theme(axis.text.x = element_blank(),
axis.text.y = element_blank())
2010
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(date == as.Date("2010-01-01"),
grepl("D", REF_AREA)) %>%
mutate(value = as.numeric(OBS_VALUE),
depts_code = substr(REF_AREA, 2, 3)) %>%
select(depts_code, value) %>%
right_join(france, by = "depts_code") %>%
ggplot(aes(long, lat, group = group, fill = value/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 20, 2),
name = "Chômage") +
labs(x = "", y = "", title = "") +
theme_minimal() + theme(axis.text.x = element_blank(),
axis.text.y = element_blank())
2000
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(date == as.Date("2000-01-01"),
grepl("D", REF_AREA)) %>%
mutate(value = as.numeric(OBS_VALUE),
depts_code = substr(REF_AREA, 2, 3)) %>%
select(depts_code, value) %>%
right_join(france, by = "depts_code") %>%
ggplot(aes(long, lat, group = group, fill = value/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 20, 2),
name = "Chômage") +
labs(x = "", y = "", title = "") +
theme_minimal() + theme(axis.text.x = element_blank(),
axis.text.y = element_blank())
1990
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(date == as.Date("1990-01-01"),
grepl("D", REF_AREA)) %>%
mutate(value = as.numeric(OBS_VALUE),
depts_code = substr(REF_AREA, 2, 3)) %>%
select(depts_code, value) %>%
right_join(france, by = "depts_code") %>%
ggplot(aes(long, lat, group = group, fill = value/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 20, 2),
name = "Chômage") +
labs(x = "", y = "", title = "") +
theme_minimal() + theme(axis.text.x = element_blank(),
axis.text.y = element_blank())
1982
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(date == as.Date("1982-01-01"),
grepl("D", REF_AREA)) %>%
mutate(value = as.numeric(OBS_VALUE),
depts_code = substr(REF_AREA, 2, 3)) %>%
select(depts_code, value) %>%
right_join(france, by = "depts_code") %>%
ggplot(aes(long, lat, group = group, fill = value/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 20, 2),
name = "Chômage") +
labs(x = "", y = "", title = "") +
theme_minimal() + theme(axis.text.x = element_blank(),
axis.text.y = element_blank())
Seine-Saint-Denis, Hauts-de-Seine, Paris
Code
`TAUX-CHOMAGE` %>%
quarter_to_date() %>%
filter(REF_AREA %in% c("D92", "D93", "D75")) %>%
+ geom_line(aes(x = date, y = OBS_VALUE/100, color = REF_AREA)) +
ggplot theme_minimal() + xlab("") + ylab("Taux de chômage") +
scale_x_date(breaks = seq(1960, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 500, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.8),
legend.title = element_blank())