Residential Property Price Indices (RPPIs) and related housing indicators
Data - OECD
Info
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
2024-07-26 | 2024-07-01 | ||
2024-08-09 | 2024-05-10 | ||
2024-08-09 | 2024-05-10 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-10 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-14 | 2024-09-14 | ||
2024-09-11 | 2020-01-18 | ||
2024-09-11 | 2023-10-19 |
SUBJECT
Code
%>%
HOUSING left_join(HOUSING_var$SUBJECT %>%
setNames(c("SUBJECT", "Subject")), by = "SUBJECT") %>%
group_by(SUBJECT, Subject) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
MEASURE
Code
%>%
HOUSING left_join(HOUSING_var$MEASURE %>%
setNames(c("MEASURE", "Measure")), by = "MEASURE") %>%
group_by(MEASURE, Measure) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
MEASURE | Measure | Nobs |
---|---|---|
IXOB | Index | 132140 |
GP | Percentage change from previous period | 88461 |
GY | Percentage change on the same period of the previous year | 85775 |
IXOBSA | Index, sa | 14691 |
ST | Transaction | 4257 |
AL | Per thousand of the National CPI Total | 3207 |
GPSA | Percentage change from previous period, sa | 820 |
GYSA | Percentage change on the same period of the previous year, sa | 786 |
GEO_COVERAGE
Code
%>%
HOUSING left_join(HOUSING_var$GEO_COVERAGE %>%
setNames(c("GEO_COVERAGE", "Geo_coverage")), by = "GEO_COVERAGE") %>%
group_by(GEO_COVERAGE, Geo_coverage) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
GEO_COVERAGE | Geo_coverage | Nobs |
---|---|---|
CN | Whole country | 312004 |
CY | Capital/main city | 15503 |
UA | Urban areas | 2630 |
FREQUENCY
Code
%>%
HOUSING left_join(HOUSING_var$FREQUENCY %>%
setNames(c("FREQUENCY", "Frequency")), by = "FREQUENCY") %>%
group_by(FREQUENCY, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
FREQUENCY | Frequency | Nobs |
---|---|---|
M | Monthly | 197912 |
Q | Quarterly | 103284 |
A | Annual | 28941 |
LOCATION
Code
%>%
HOUSING left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
group_by(LOCATION, Location) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
France, United States, Germany, Japan
CPI: 04.1 - Actual rentals for housing - CP040100
Code
%>%
HOUSING filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "CP040100",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: 04.1 - Actual rentals") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: 04.2 - Imputed rentals for housing - CP040200
Code
%>%
HOUSING filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "CP040200",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: 04.2 - Imputed rentals") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: Housing (04.1, 04.2, 04.3) - CPGRHO01
Code
%>%
HOUSING filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "CPGRHO01",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: Housing (04.1, 04.2, 04.3)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: Housing excluding imputed rentals for housing (04.1, 04.3) - CPGRHO02
Code
%>%
HOUSING filter(LOCATION %in% c("FRA", "USA", "DEU", "JPN"),
== "CPGRHO02",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: Housing (04.1, 04.2, 04.3)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
Canada, United Kingdom, Norway, Denmark
CPI: 04.1 - Actual rentals for housing - CP040100
Code
%>%
HOUSING filter(LOCATION %in% c("CAN", "GBR", "DNK", "NOR"),
== "CP040100",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: 04.1 - Actual rentals") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: 04.2 - Imputed rentals for housing - CP040200
Code
%>%
HOUSING filter(LOCATION %in% c("CAN", "GBR", "DNK", "NOR"),
== "CP040200",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: 04.2 - Imputed rentals") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: Housing (04.1, 04.2, 04.3) - CPGRHO01
Code
%>%
HOUSING filter(LOCATION %in% c("CAN", "GBR", "DNK", "NOR"),
== "CPGRHO01",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: Housing (04.1, 04.2, 04.3)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())
CPI: Housing excluding imputed rentals for housing (04.1, 04.3) - CPGRHO02
Code
%>%
HOUSING filter(LOCATION %in% c("CAN", "GBR", "DNK", "NOR"),
== "CPGRHO02",
SUBJECT == "Q",
FREQUENCY == "IXOB") %>%
MEASURE %>%
quarter_to_enddate left_join(HOUSING_var$LOCATION %>%
setNames(c("LOCATION", "Location")), by = "LOCATION") %>%
ggplot(.) + geom_line() +
aes(x = date, y = obsValue, color = Location, linetype = Location) +
theme_minimal() + xlab("") + ylab("CPI: Housing (04.1, 04.2, 04.3)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 10)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.20),
legend.title = element_blank())