source | dataset | .html | .RData |
---|---|---|---|
eurostat | hbs_str_t211 | 2025-01-05 | 2025-01-07 |
Structure of consumption expenditure by COICOP consumption purpose
Data - Eurostat
Info
Data on housing
source | dataset | .html | .RData |
---|---|---|---|
bdf | RPP | 2025-01-05 | 2024-11-19 |
bis | LONG_PP | 2024-12-29 | 2024-05-10 |
bis | SELECTED_PP | 2024-12-29 | 2024-10-31 |
ecb | RPP | 2024-12-29 | 2024-12-29 |
eurostat | ei_hppi_q | 2025-01-07 | 2025-01-07 |
eurostat | hbs_str_t223 | 2025-01-05 | 2025-01-07 |
eurostat | prc_hicp_midx | 2024-11-01 | 2025-01-07 |
eurostat | prc_hpi_q | 2025-01-05 | 2024-10-09 |
fred | housing | 2025-01-07 | 2025-01-07 |
insee | IPLA-IPLNA-2015 | 2025-01-07 | 2025-01-05 |
oecd | housing | 2024-09-15 | 2020-01-18 |
oecd | SNA_TABLE5 | 2024-09-11 | 2023-10-19 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
%>%
hbs_str_t211 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(2) %>%
print_table_conditional()
time | Nobs |
---|---|
2020 | 4788 |
2015 | 5928 |
coicop
All
Code
%>%
hbs_str_t211 left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
2-digit
Code
%>%
hbs_str_t211 filter(nchar(coicop) == 4) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
coicop | Coicop | Nobs |
---|---|---|
CP01 | Food and non-alcoholic beverages | 203 |
CP02 | Alcoholic beverages, tobacco and narcotics | 203 |
CP03 | Clothing and footwear | 203 |
CP04 | Housing, water, electricity, gas and other fuels | 203 |
CP05 | Furnishings, household equipment and routine household maintenance | 203 |
CP06 | Health | 203 |
CP07 | Transport | 203 |
CP08 | Communications | 203 |
CP09 | Recreation and culture | 203 |
CP10 | Education | 202 |
CP11 | Restaurants and hotels | 203 |
CP12 | Miscellaneous goods and services | 203 |
3-digit
Code
%>%
hbs_str_t211 filter(nchar(coicop) == 5) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
4-digit
Code
%>%
hbs_str_t211 filter(nchar(coicop) == 6) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
geo
Code
%>%
hbs_str_t211 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
hbs_str_t211 group_by(time) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
time | Nobs |
---|---|
1988 | 1307 |
1994 | 2316 |
1999 | 2348 |
2005 | 8233 |
2010 | 7334 |
2015 | 5928 |
2020 | 4788 |
France
Table
Code
%>%
hbs_str_t211 left_join(coicop, by = "coicop") %>%
filter(geo == "FR",
substr(coicop, 1, 2) == "CP",
!= "CP00",
coicop %in% c("2015", "2020")) %>%
time select(-unit) %>%
select(-geo) %>%
spread(time, values) %>%
print_table_conditional()
2-digit
Code
%>%
hbs_str_t211 left_join(coicop, by = "coicop") %>%
filter(geo == "FR",
substr(coicop, 1, 2) == "CP",
nchar(coicop) == 4,
!= "CP00",
coicop %in% c("2015", "2020")) %>%
time select(-unit) %>%
select(-geo) %>%
spread(time, values) %>%
print_table_conditional()
freq | coicop | Coicop | 2015 | 2020 |
---|---|---|---|---|
A | CP01 | Food and non-alcoholic beverages | 143 | 143 |
A | CP02 | Alcoholic beverages, tobacco and narcotics | 25 | 25 |
A | CP03 | Clothing and footwear | 40 | 40 |
A | CP04 | Housing, water, electricity, gas and other fuels | 289 | 289 |
A | CP05 | Furnishings, household equipment and routine household maintenance | 48 | 48 |
A | CP06 | Health | 16 | 16 |
A | CP07 | Transport | 132 | 132 |
A | CP08 | Communications | 24 | 24 |
A | CP09 | Recreation and culture | 77 | 77 |
A | CP10 | Education | 6 | 6 |
A | CP11 | Restaurants and hotels | 55 | 55 |
A | CP12 | Miscellaneous goods and services | 147 | 147 |
3-digit
Code
%>%
hbs_str_t211 left_join(coicop, by = "coicop") %>%
filter(geo == "FR",
substr(coicop, 1, 2) == "CP",
nchar(coicop) == 5,
!= "CP00",
coicop %in% c("2015", "2020")) %>%
time select(-unit) %>%
select(-geo) %>%
spread(time, values) %>%
print_table_conditional()
4-digit
Code
%>%
hbs_str_t211 left_join(coicop, by = "coicop") %>%
filter(geo == "FR",
substr(coicop, 1, 2) == "CP",
nchar(coicop) == 6,
!= "CP00",
coicop %in% c("2015", "2020")) %>%
time select(-unit) %>%
select(-geo) %>%
spread(time, values) %>%
print_table_conditional()
Table
2015
Code
%>%
hbs_str_t211 filter(time == "2015",
%in% c("CP04", "CP041", "CP042")) %>%
coicop left_join(geo, by = "geo") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(coicop, values) %>%
arrange(-CP04) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
2020
Code
%>%
hbs_str_t211 filter(time == "2020",
%in% c("CP04", "CP041", "CP042")) %>%
coicop left_join(geo, by = "geo") %>%
select_if(~ n_distinct(.) > 1) %>%
spread(coicop, values) %>%
arrange(-CP04) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {