Point d’indice de la fonction publique
Data - IPP
Info
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2024-12-30 | 2024-12-30 |
insee | CNT-2014-CSI | 2025-01-02 | 2025-01-02 |
insee | conso-eff-fonction | 2024-12-29 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2024-12-29 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2024-12-29 | 2024-12-11 |
insee | reve-niv-vie-individu-activite | 2024-12-29 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2024-12-29 | 2024-12-11 |
insee | T_7401 | 2024-12-29 | 2024-10-18 |
insee | t_men_val | 2025-01-02 | 2024-12-21 |
insee | t_pouvachat_val | 2025-01-02 | 2024-12-21 |
insee | t_recapAgent_val | 2024-12-29 | 2024-12-21 |
insee | t_salaire_val | 2024-12-29 | 2024-12-21 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
Indice Fonction Publique
All
Valeur
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
scale_color_manual(values = viridis(8)[1:7]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = "")) +
ylab("Point Indice Fonction Publique (euros)") + xlab("")
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 3000, 100)) +
ylab("Point Indice Fonction Publique") + xlab("")
1970-1990
Valeur
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1970-01-01"),
<= as.Date("1990-01-01")) %>%
date ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 4),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = ""))
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1970-01-01"),
<= as.Date("1990-01-01")) %>%
date mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 20))
1986-
Valeur
Code
%>%
indicefp arrange(desc(date)) %>%
# Add today's date to be equal ------
slice(1, 1:n()) %>%
mutate(date = ifelse(row_number() == 1, Sys.Date(), date)) %>%
mutate(date = as.Date(date)) %>%
select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1986-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = ""))
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1986-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5))
1990-
Valeur
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1990-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = ""))
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1990-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5))
1992-
Valeur
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1992-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = ""))
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1992-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5))
1996-
Valeur
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1996-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = dollar_format(accuracy = 1, suffix = " € / point", prefix = ""))
Base 100
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
theme_minimal() + ylab("Point Indice Fonction Publique (euros)") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5))
inflation
Table
Code
%>%
cpi print_table_conditional()
Graph
All
Code
%>%
cpi mutate(cpi = 100*cpi/cpi[date == as.Date("1951-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(100, 200, 300, 500, 800, 1000, 1200, 1500, 2000)) +
theme_minimal() + xlab("") + ylab("")
1990-
Code
%>%
cpi filter(date >= as.Date("1990-01-01")) %>%
mutate(cpi = 100*cpi/cpi[date == as.Date("1990-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1990)")
1995-
Code
%>%
cpi filter(date >= as.Date("1995-01-01")) %>%
mutate(cpi = 100*cpi/cpi[date == as.Date("1995-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1995)")
1996-
Code
%>%
cpi filter(date >= as.Date("1996-01-01")) %>%
mutate(cpi = 100*cpi/cpi[date == as.Date("1996-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1996)")
2000-
Code
%>%
cpi filter(date >= as.Date("2000-01-01")) %>%
mutate(cpi = 100*cpi/cpi[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 2000)")
2012-
Code
%>%
cpi filter(date >= as.Date("2012-01-01")) %>%
mutate(cpi = 100*cpi/cpi[date == as.Date("2012-01-01")]) %>%
+ geom_line(aes(x = date, y = cpi)) +
ggplot scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 1)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 2012)")
Indice Fonction Publique Réel
1970-
Annuel
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi, by = "date") %>%
mutate(value = value/cpi,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 2)) +
ylab("Point Indice Fonction Publique (euros constants)") + xlab("")
1965-
Annuel
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(date >= as.Date("1965-01-01")) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi, by = "date") %>%
mutate(value = value/cpi,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 2)) +
ylab("Point Indice Fonction Publique (euros constants)") + xlab("")
1996-
Annuel
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi, by = "date") %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = value/cpi,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 2)) +
ylab("Point Indice Fonction Publique (euros constants)") + xlab("")
CPI
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(value = value/cpi,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 2)) +
ylab("Point Indice Fonction Publique (€ constants)") + xlab("")
CPIH
All
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1997-01-01")) %>%
mutate(value = value/cpih,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 2)) +
ylab("Point Indice Fonction Publique (€ constants)") + xlab("")
in %
Code
<- indicefp %>%
data_alter_eco select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1996-01-01")) %>%
transmute(date,
value_cpih = value/cpih,
value_cpi = value/cpi) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique par rapport à 1996 (IPCH, Eurostat)` = value_cpih/value_cpih[1],
`Valeur du Point d'Indice de la Fonction Publique par rapport à 1996 (IPC, INSEE)` = value_cpi/value_cpi[1])
write_csv(data_alter_eco, file = "data_alter_eco.csv")
%>%
data_alter_eco gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.43, 0.1),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1996") + xlab("")
in %
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1997-01-01")) %>%
transmute(date,
value_cpih = value/cpih,
value_cpi = value/cpi) %>%
transmute(date,
`Valeur réelle du Point d'Indice par rapport à 1996` = value_cpih/value_cpih[1]) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.43, 0.1),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice vs. 1996") + xlab("") +
labs(title = "Valeur réelle du Point Indice de la Fonction Publique par rapport à 1997",
subtitle = "(Indice des prix utilisé: Indice des Prix à la Consommation Harmonisé (IPCH))")
1996-
1997-
Mensuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("1997-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1997 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut,
`Valeur du Point d'Indice de la Fonction Publique vs. 1997 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1997, 2100, 5), seq(1999, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1997") + xlab("") +
geom_text(data = . %>% filter((year(date) %in% seq(1999, 2019, 5) & month(date) == 1) | date == max(date)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
1999-
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1999-01-01")) %>%
transmute(date,
value_cpih = value/cpih,
value_cpi = value/cpi) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPCH, Eurostat)` = value_cpih/value_cpih[1]-1,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPC, INSEE)` = value_cpi/value_cpi[1]-1) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 2),
labels = percent_format(acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1999") + xlab("") +
geom_text(data = . %>% filter(year(date) %in% seq(1999, 2040, 5)),aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 0.1)),
fontface ="plain", color = "black", size = 3)
2015- (avec correction net brut)
Annuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-annuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
left_join(net_brut_annuel, by = "date") %>%
filter(date >= as.Date("2015-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut-1,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut-1) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 2),
labels = percent_format(acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1999") + xlab("") +
geom_text(data = . %>% filter(year(date) %in% seq(1999, 2040, 5)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 1)),
fontface ="plain", color = "black", size = 3)
Mensuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2015-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 2015 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Valeur du Point d'Indice de la Fonction Publique vs. 2015 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 1), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 2015") + xlab("") +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1), color = variable),
fontface ="bold", size = 4)
2021T4-
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2021-10-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 2021T4 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Valeur du Point d'Indice de la Fonction Publique vs. 2015 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%Y %b")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank(),
axis.text.x = ) +
scale_y_log10(breaks = seq(1, 0.02, -0.01),
labels = percent(seq(1, 0.02, -0.01)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 2015") + xlab("") +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
2012-
Mensuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2012-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 2012 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Valeur du Point d'Indice de la Fonction Publique vs. 2012 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 1), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 2012") + xlab("") +
geom_text_repel(data = . %>% filter(year(date) %in% c(2017, 2024),
month(date) == 3),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
1999- (avec correction net brut)
Annuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-annuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
left_join(net_brut_annuel, by = "date") %>%
filter(date >= as.Date("1999-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut-1,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut-1) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 2),
labels = percent_format(acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1999") + xlab("") +
geom_text(data = . %>% filter(year(date) %in% seq(1999, 2040, 5)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 1)),
fontface ="plain", color = "black", size = 3)
Trimestriel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-trimestriel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(month(date) %in% c(1, 4, 7, 10),
day(date) == 1) %>%
left_join(net_brut_trimestriel, by = "date") %>%
filter(date >= as.Date("1999-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut-1,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut-1) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 2),
labels = percent_format(acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1999") + xlab("") +
geom_text(data = . %>% filter(year(date) %in% seq(1999, 2040, 5),
month(date) == 1),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE, acc = 1)),
fontface ="plain", color = "black", size = 3)
Mensuel
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("1999-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut,
`Valeur du Point d'Indice de la Fonction Publique vs. 1999 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1999") + xlab("") +
geom_text(data = . %>% filter((year(date) %in% seq(2009, 2019, 5) & month(date) == 1)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1), color = variable),
fontface ="bold", size = 3)
Mai 2007 (Sarkozy)
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2007-05-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. mai 2007 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Valeur du Point d'Indice de la Fonction Publique vs. mai 2007 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Net vs. mai 2007") + xlab("") +
geom_text(data = . %>% filter(date %in% c(max(date), as.Date("2012-05-01"), as.Date("2017-05-01"),
as.Date("2022-05-01"))),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
2007-
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2007-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 2007 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*net_brut,
`Valeur du Point d'Indice de la Fonction Publique vs. 2007 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*net_brut) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 2007") + xlab("") +
geom_text_repel(data = . %>% filter(year(date) %in% seq(1999, 2040, 5),
month(date) == 1),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
2017-
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2017-01-01")) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique vs. 2017 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Valeur du Point d'Indice de la Fonction Publique vs. 2017 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 1), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("Valeur du Point Indice Net vs. 2017") + xlab("") +
geom_text(data = . %>% filter(date %in% c(max(date), as.Date("2022-01-01"))),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1)),
fontface ="bold", color = "black", size = 3)
2017T2-
Code
load_data("insee/INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
ungroup left_join(cpi2_m, by = "date") %>%
filter(day(date) == 1) %>%
left_join(net_brut_mensuel, by = "date") %>%
filter(date >= as.Date("2017-06-01")) %>%
transmute(date,
`Pouvoir d'achat du Point d'Indice Net vs. 2017 (IPCH, Eurostat)` = (value/value[1])*(cpih[1]/cpih)*(net_brut/net_brut[1]),
`Pouvoir d'achat du Point d'Indice Net vs. 2017 (IPC, INSEE)` = (value/value[1])*(cpi[1]/cpi)*(net_brut/net_brut[1])) %>%
gather(variable, OBS_VALUE, -date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = variable)) + theme_minimal() +
scale_x_date(breaks = c(seq(1999, 2100, 1), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.43, 0.12),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(1, 0.02, -0.02),
labels = percent(seq(1, 0.02, -0.02)-1, acc = 1)) +
ylab("") + xlab("") +
geom_label(data = . %>% filter(date %in% c(max(date))),
aes(x = date, y = OBS_VALUE, label = percent(OBS_VALUE-1, acc = 0.1), color = variable),
fontface ="bold", size = 4) +
ggtitle("Valeur du point d'indice net de la fonction publique par rapport à 2017")
2010-2018
Annuel
Code
%>%
indicefp select(date, point_indice_en_euros) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi, by = "date") %>%
filter(date >= as.Date("2010-01-01"),
<= as.Date("2018-01-01")) %>%
date mutate(value = value/cpi,
value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1)) +
ylab("Point Indice Fonction Publique (euros constants)") + xlab("")