source | dataset | .html | .RData |
---|---|---|---|
insee | t_recapAgent_val | 2024-12-21 | 2024-12-21 |
Récapitulatif des séries des comptes d’agents
Data - Insee
Info
Données
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2024-12-22 | 2024-12-22 |
insee | CNT-2014-CSI | 2024-12-22 | 2024-12-22 |
insee | conso-eff-fonction | 2024-12-22 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2024-12-22 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2024-12-22 | 2024-12-11 |
insee | reve-niv-vie-individu-activite | 2024-12-22 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2024-12-22 | 2024-12-11 |
insee | T_7401 | 2024-12-22 | 2024-10-18 |
insee | t_men_val | 2024-12-22 | 2024-12-21 |
insee | t_pouvachat_val | 2024-12-22 | 2024-12-21 |
insee | t_recapAgent_val | 2024-12-21 | 2024-12-21 |
insee | t_salaire_val | 2024-12-21 | 2024-12-21 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-12-22 |
date
Code
%>%
t_recapAgent_val group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditional
2017T2-
Table
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
D41 - Intérêts
2017T2-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D41") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-04-01 | 2024-07-01 |
---|---|---|---|---|---|---|---|---|
APU | 24 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.352 | 0.759 | 0.722 |
APU | 28 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 10.253 | 14.169 | 14.756 |
ISBLSM | 16 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.166 | 0.906 | 0.867 |
ISBLSM | 18 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 0.046 | 0.192 | 0.185 |
Menages | 42 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 3.150 | 17.721 | 16.948 |
Menages | 46 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 3.160 | 15.500 | 14.816 |
RdM | 10 | NA | D41 | En provenance du reste du monde | Intérêts | 13.594 | 41.926 | 42.189 |
RdM | 31 | NA | D41 | à destination du reste du monde | Intérêts | 15.015 | 48.720 | 48.561 |
SF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 37.024 | 129.099 | 128.761 |
SF | 21 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 25.236 | 108.970 | 106.721 |
SNF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 14.800 | 43.008 | 43.244 |
SNF | 22 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 18.216 | 59.455 | 60.436 |
2021T2-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D41") %>%
filter(date %in% c(as.Date("2021-04-01"), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2021-04-01 | 2024-07-01 |
---|---|---|---|---|---|---|---|
APU | 24 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.139 | 0.722 |
APU | 28 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 7.897 | 14.756 |
ISBLSM | 16 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.126 | 0.867 |
ISBLSM | 18 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 0.028 | 0.185 |
Menages | 42 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 2.301 | 16.948 |
Menages | 46 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 2.318 | 14.816 |
RdM | 10 | NA | D41 | En provenance du reste du monde | Intérêts | 12.381 | 42.189 |
RdM | 31 | NA | D41 | à destination du reste du monde | Intérêts | 11.114 | 48.561 |
SF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 30.591 | 128.761 |
SF | 21 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 20.837 | 106.721 |
SNF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 16.193 | 43.244 |
SNF | 22 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 17.001 | 60.436 |
D42 - Dividendes
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-04-01 | 2024-07-01 |
---|---|---|---|---|---|---|---|---|
APU | 25 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 2.017 | 1.771 | 1.851 |
Menages | 43 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 8.096 | 17.516 | 17.611 |
RdM | 11 | NA | D42 | En provenance du reste du monde | Dividendes | 13.900 | 27.362 | 27.742 |
RdM | 32 | NA | D42 | à destination du reste du monde | Dividendes | 11.211 | 21.464 | 21.729 |
SF | 18 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 12.135 | 21.657 | 21.809 |
SF | 22 | Compte d'affectation des revenus primaires | D42 | Versé | Dividendes | 10.339 | 16.888 | 17.301 |
SNF | 18 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 37.506 | 49.230 | 49.737 |
SNF | 23 | Compte d'affectation des revenus primaires | D42 | Versé | Dividendes | 46.726 | 67.388 | 67.694 |
B9NF - Besoin (-) ou Capacité (+) de financement
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-04-01 | 2024-07-01 |
---|---|---|---|---|---|---|---|---|
APU | 64 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | -17.783 | -41.547 | -46.582 |
ISBLSM | 35 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 0.082 | 0.477 | 0.446 |
Menages | 78 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 14.164 | 39.344 | 41.146 |
RdM | 50 | NA | B9NF | Besoin (-) ou Capacité(+) de financement de la Nation | NA | -2.978 | -1.686 | 2.923 |
SF | 52 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | -1.345 | 3.008 | 5.335 |
SNF | 46 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 1.905 | -2.968 | 2.577 |
B9NF - Besoin (-) ou Capacité (+) de financement
Tous
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
+ geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-200, 100, 10),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank())
% du PIB
Tous
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2000
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2000-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2007-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2007-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2007-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2013-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2013-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2013-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2013-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2017-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2017-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal") +
geom_hline(yintercept = 0, linetype = "dashed")
D42 - Dividendes
Tous
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
+ geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 100, 10),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank())
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.2, 0.7),
legend.title = element_blank())
Nets
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
transmute(date, value, Variable = paste0(sheet, " - ", Operation1)) %>%
spread(Variable, value) %>%
transmute(date,
`Administrations Publiques: Reçu` = `APU - Reçu`,
`Ménages: Reçu` = `Menages - Reçu`,
`Reste du Monde: En provenance - à destination` = `RdM - En provenance du reste du monde` - `RdM - à destination du reste du monde`,
`Sociétés Financières: Reçu - Versé` = `SF - Reçu` - `SF - Versé`,
`Sociétés Non Financières: Reçu - Versé` = `SNF - Reçu` - `SNF - Versé`) %>%
gather(Variable, value, -date) %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, .5),
labels = percent_format(acc = .1)) +
theme(legend.position = c(0.5, 0.88),
legend.title = element_blank())
D42, D44
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44"),
== "Menages") %>%
sheet left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Operation2)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 0.1),
labels = percent_format(acc = 0.1)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Mds€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44"),
== "Menages") %>%
sheet + geom_line(aes(x = date, y = value, color = Operation2)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 2)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
1999
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44", "B6", "D11"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = paste0(Operation1, Operation2))) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 100)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
1999
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D51", "D611", "D613"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = paste0(Operation1, Operation2))) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 10)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
B2 (y compris B3)
1999-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B2 (y compris B3)"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value_index = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value_index, color = paste0(Operation2))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 10)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
geom_label_repel(data = . %>% filter(date == max(date) | date == min(date)),
aes(x = date, y = value_index, label = round(value), color = Operation2))
2017-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B2 (y compris B3)"),
== "Menages") %>%
sheet filter(date >= as.Date("2017-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value_index = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value_index, color = Operation2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 5)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
geom_label_repel(data = . %>% filter(date == max(date) | date == min(date)),
aes(x = date, y = value_index, label = round(value), color = Operation2))
Comptes des ménages
Dividendes
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42",
== "Menages") %>%
sheet + geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 100, 2),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42",
== "Menages") %>%
sheet left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 0.1),
labels = percent_format(acc = 0.1)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Revenu
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B6", "B7"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Operation1)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Epargne
% du revenu
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "B6", "P51"),
== "Menages") %>%
sheet select(date, value, operation) %>%
arrange(date) %>%
%>%
unique spread(operation, value) %>%
transmute(date,
`Epargne brute des ménages B8/B6` = B8/B6,
`Besoin (-) ou Capacité (+) de financement B9NF/B6` = B9NF/B6,
`Formation brute de capital fixe P51/B6` = P51/B6) %>%
gather(variable, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = variable)) +
ggplot xlab("") + ylab("% du revenu disponible brut (B6)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
% du PIB
Tous
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2006-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2006-01-01")) %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2015-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2015-01-01")) %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())