source | dataset | .html | .RData |
---|---|---|---|
insee | t_recapAgent_val | 2024-10-29 | 2024-09-02 |
Récapitulatif des séries des comptes d’agents
Data - Insee
Info
Données
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-CSI | 2024-11-05 | 2024-11-05 |
insee | conso-eff-fonction | 2024-11-05 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2024-11-05 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2024-11-05 | 2024-09-05 |
insee | reve-niv-vie-individu-activite | 2024-11-05 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2024-11-05 | 2024-09-05 |
insee | T_7401 | 2024-10-18 | 2024-10-18 |
insee | t_men_val | 2024-11-05 | 2024-09-02 |
insee | t_pouvachat_val | 2024-11-05 | 2024-09-04 |
insee | t_recapAgent_val | 2024-10-29 | 2024-09-02 |
insee | t_salaire_val | 2024-11-03 | 2024-09-02 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-05 |
date
Code
%>%
t_recapAgent_val group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditional
2017T2-
Table
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
D41 - Intérêts
2017T2-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D41") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-01-01 | 2024-04-01 |
---|---|---|---|---|---|---|---|---|
APU | 24 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.343 | 0.964 | 0.884 |
APU | 28 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 10.194 | 13.464 | 13.895 |
ISBLSM | 16 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.151 | 0.803 | 0.681 |
ISBLSM | 18 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 0.042 | 0.135 | 0.102 |
Menages | 42 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 2.869 | 21.465 | 20.284 |
Menages | 46 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 2.876 | 18.429 | 17.348 |
RdM | 10 | NA | D41 | En provenance du reste du monde | Intérêts | 13.578 | 42.837 | 42.904 |
RdM | 31 | NA | D41 | à destination du reste du monde | Intérêts | 14.979 | 50.137 | 49.641 |
SF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 36.376 | 132.695 | 132.619 |
SF | 21 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 24.726 | 117.917 | 115.368 |
SNF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 14.688 | 43.457 | 42.752 |
SNF | 22 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 17.989 | 56.739 | 57.244 |
2021T2-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D41") %>%
filter(date %in% c(as.Date("2021-04-01"), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2021-04-01 | 2024-04-01 |
---|---|---|---|---|---|---|---|
APU | 24 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.136 | 0.884 |
APU | 28 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 7.858 | 13.895 |
ISBLSM | 16 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 0.124 | 0.681 |
ISBLSM | 18 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 0.028 | 0.102 |
Menages | 42 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 2.025 | 20.284 |
Menages | 46 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 1.953 | 17.348 |
RdM | 10 | NA | D41 | En provenance du reste du monde | Intérêts | 12.359 | 42.904 |
RdM | 31 | NA | D41 | à destination du reste du monde | Intérêts | 11.083 | 49.641 |
SF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 30.476 | 132.619 |
SF | 21 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 20.847 | 115.368 |
SNF | 17 | Compte d'affectation des revenus primaires | D41 | Reçu | Intérêts | 16.202 | 42.752 |
SNF | 22 | Compte d'affectation des revenus primaires | D41 | Versé | Intérêts | 17.002 | 57.244 |
D42 - Dividendes
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-01-01 | 2024-04-01 |
---|---|---|---|---|---|---|---|---|
APU | 25 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 2.017 | 1.594 | 1.615 |
Menages | 43 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 8.096 | 17.410 | 17.516 |
RdM | 11 | NA | D42 | En provenance du reste du monde | Dividendes | 13.900 | 26.027 | 26.176 |
RdM | 32 | NA | D42 | à destination du reste du monde | Dividendes | 11.211 | 20.331 | 20.428 |
SF | 18 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 12.135 | 21.484 | 21.700 |
SF | 22 | Compte d'affectation des revenus primaires | D42 | Versé | Dividendes | 10.339 | 16.155 | 16.421 |
SNF | 18 | Compte d'affectation des revenus primaires | D42 | Reçu | Dividendes | 37.506 | 48.642 | 49.230 |
SNF | 23 | Compte d'affectation des revenus primaires | D42 | Versé | Dividendes | 46.726 | 67.279 | 67.890 |
B9NF - Besoin (-) ou Capacité (+) de financement
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
filter(date %in% c(as.Date("2017-04-01"), max(date) - months(3), max(date))) %>%
spread(date, value) %>%
print_table_conditional(.)
sheet | column | Compte | operation | Operation1 | Operation2 | 2017-04-01 | 2024-01-01 | 2024-04-01 |
---|---|---|---|---|---|---|---|---|
APU | 64 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | -17.853 | -40.248 | -39.783 |
ISBLSM | 35 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 0.071 | 0.434 | 0.352 |
Menages | 78 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 14.438 | 37.441 | 39.488 |
RdM | 50 | NA | B9NF | Besoin (-) ou Capacité(+) de financement de la Nation | NA | -2.934 | -0.998 | -0.921 |
SF | 52 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | -1.704 | -1.163 | 2.072 |
SNF | 46 | Compte de capital | B9NF | Besoin (-) ou Capacité (+) de financement | NA | 2.114 | 2.538 | -3.050 |
B9NF - Besoin (-) ou Capacité (+) de financement
Tous
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
+ geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-200, 100, 10),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank())
% du PIB
Tous
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2000
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2000-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2000-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2007-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2007-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2007-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2013-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2013-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2013-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2013-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
2017-
Basique
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value/gdp, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("2017-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
Autre division
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "B9NF") %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2017-01-01")) %>%
transmute(date, value = value/gdp, sheet) %>%
spread(sheet, value) %>%
transmute(date, `Administrations Publiques` = `APU`, `Sociétés (SNF + SF)` = SNF + SF, `Ménages` = Menages) %>%
gather(sheet, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = sheet)) +
ggplot xlab("") + ylab("Besoin (-) ou Capacité (+) de financement (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.35, 0.84),
legend.title = element_blank(),
legend.direction = "horizontal")
D42 - Dividendes
Tous
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
+ geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 100, 10),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank())
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.2, 0.7),
legend.title = element_blank())
Nets
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42") %>%
transmute(date, value, Variable = paste0(sheet, " - ", Operation1)) %>%
spread(Variable, value) %>%
transmute(date,
`Administrations Publiques: Reçu` = `APU - Reçu`,
`Ménages: Reçu` = `Menages - Reçu`,
`Reste du Monde: En provenance - à destination` = `RdM - En provenance du reste du monde` - `RdM - à destination du reste du monde`,
`Sociétés Financières: Reçu - Versé` = `SF - Reçu` - `SF - Versé`,
`Sociétés Non Financières: Reçu - Versé` = `SNF - Reçu` - `SNF - Versé`) %>%
gather(Variable, value, -date) %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, .5),
labels = percent_format(acc = .1)) +
theme(legend.position = c(0.5, 0.88),
legend.title = element_blank())
D42, D44
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44"),
== "Menages") %>%
sheet left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Operation2)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 0.1),
labels = percent_format(acc = 0.1)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Mds€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44"),
== "Menages") %>%
sheet + geom_line(aes(x = date, y = value, color = Operation2)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 2)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
1999
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D42", "D44", "B6", "D11"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = paste0(Operation1, Operation2))) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 100)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
1999
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("D51", "D611", "D613"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = paste0(Operation1, Operation2))) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 10)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
B2 (y compris B3)
1999-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B2 (y compris B3)"),
== "Menages") %>%
sheet filter(date >= as.Date("1999-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value_index = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value_index, color = paste0(Operation2))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 10)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
geom_label_repel(data = . %>% filter(date == max(date) | date == min(date)),
aes(x = date, y = value_index, label = round(value), color = Operation2))
2017-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B2 (y compris B3)"),
== "Menages") %>%
sheet filter(date >= as.Date("2017-01-01")) %>%
group_by(Operation2) %>%
arrange(date) %>%
mutate(value_index = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value_index, color = Operation2)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 5)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
geom_label_repel(data = . %>% filter(date == max(date) | date == min(date)),
aes(x = date, y = value_index, label = round(value), color = Operation2))
Comptes des ménages
Dividendes
Md€
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42",
== "Menages") %>%
sheet + geom_line(aes(x = date, y = value, color = paste0(sheet, " - ", Operation1))) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 100, 2),
labels = dollar_format(pre = "", su = " Md€")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation == "D42",
== "Menages") %>%
sheet left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp)) +
ggplot xlab("") + ylab("Dividendes reçus, Ménages (% du PIB)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 0.1),
labels = percent_format(acc = 0.1)) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank())
Revenu
% du PIB
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B6", "B7"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
+ geom_line(aes(x = date, y = value/gdp, color = Operation1)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Epargne
% du revenu
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "B6", "P51"),
== "Menages") %>%
sheet select(date, value, operation) %>%
arrange(date) %>%
%>%
unique spread(operation, value) %>%
transmute(date,
`Epargne brute des ménages B8/B6` = B8/B6,
`Besoin (-) ou Capacité (+) de financement B9NF/B6` = B9NF/B6,
`Formation brute de capital fixe P51/B6` = P51/B6) %>%
gather(variable, value, -date) %>%
+ geom_line(aes(x = date, y = value, color = variable)) +
ggplot xlab("") + ylab("% du revenu disponible brut (B6)") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
% du PIB
Tous
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2006-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2006-01-01")) %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "2 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2015-
Code
%>%
t_recapAgent_val left_join(variable, by = c("sheet", "column")) %>%
filter(operation %in% c("B8", "B9NF", "P51"),
== "Menages") %>%
sheet arrange(date) %>%
left_join(gdp_quarterly, by = "date") %>%
filter(date >= as.Date("2015-01-01")) %>%
mutate(Variable = ifelse(operation %in% c("B8", "B9NF"),
%>%
Operation1, Operation2)) + geom_line(aes(x = date, y = value/gdp, color = Variable)) +
ggplot xlab("") + ylab("% du PIB") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "1 year"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(acc = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())