| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | INDICE-TRAITEMENT-FP | Indice de traitement brut dans la fonction publique de l'État | 2025-12-25 | 2025-12-27 |
| insee | IPCH-2015 | Indices des prix à la consommation harmonisés | 2025-12-25 | 2025-12-27 |
| insee | IPC-2015 | Indice des prix à la consommation - Base 2015 | 2025-12-25 | 2025-12-27 |
Indice de traitement brut dans la fonction publique de l’État
Data - INSEE
Info
Données sur les salaires
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | INDICE-TRAITEMENT-FP | Indice de traitement brut dans la fonction publique de l'État | 2025-12-25 | 2025-12-27 |
| dares | les-indices-de-salaire-de-base | Les indices de salaire de base | 2025-12-15 | 2025-12-15 |
| insee | CNA-2014-RDB | Revenu et pouvoir d’achat des ménages | 2025-12-25 | 2025-12-27 |
| insee | CNT-2014-CSI | Comptes de secteurs institutionnels | 2025-12-25 | 2025-12-27 |
| insee | ECRT2023 | Emploi, chômage, revenus du travail - Edition 2023 | 2025-12-25 | 2023-06-30 |
| insee | SALAIRES-ACEMO | Indices trimestriels de salaires dans le secteur privé - Résultats par secteur d’activité | 2025-12-25 | 2025-12-27 |
| insee | SALAIRES-ACEMO-2017 | Indices trimestriels de salaires dans le secteur privé | 2025-12-25 | 2025-12-27 |
| insee | SALAIRES-ANNUELS | Salaires annuels | 2025-12-25 | 2025-12-27 |
| insee | if230 | Séries longues sur les salaires dans le secteur privé | 2025-12-25 | 2021-12-04 |
| insee | ir_salaires_SL_23_csv | NA | NA | NA |
| insee | ir_salaires_SL_csv | NA | NA | NA |
| insee | t_7401 | NA | NA | NA |
| insee | t_salaire_val | Salaire moyen par tête - SMPT (données CVS) | 2025-12-25 | 2025-12-27 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2025-12-27 |
Last
Code
`INDICE-TRAITEMENT-FP` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(2) %>%
print_table_conditional()| TIME_PERIOD | Nobs |
|---|---|
| 2025-Q3 | 8 |
| 2025-Q2 | 8 |
TITLE_FR
Code
`INDICE-TRAITEMENT-FP` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n(),
date1 = first(TIME_PERIOD),
date2 = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}INDICATEUR
Code
`INDICE-TRAITEMENT-FP` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
print_table_conditional()| INDICATEUR | Indicateur | Nobs |
|---|---|---|
| NSALBF | Indice de traitement brut | 400 |
| NSALNF | Indice de traitement net | 400 |
CATEGORIE_FP
Code
`INDICE-TRAITEMENT-FP` %>%
left_join(CATEGORIE_FP, by = "CATEGORIE_FP") %>%
group_by(CATEGORIE_FP, Categorie_fp) %>%
summarise(Nobs = n()) %>%
print_table_conditional()| CATEGORIE_FP | Categorie_fp | Nobs |
|---|---|---|
| A | Catégorie A | 200 |
| B | Catégorie B | 200 |
| C | Catégorie C | 200 |
| T | Toutes catégories | 200 |
TIME_PERIOD
Code
`INDICE-TRAITEMENT-FP` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()Par type
Net et Brut
Code
`INDICE-TRAITEMENT-FP` %>%
#filter(CATEGORIE_FP == "A") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
left_join(CATEGORIE_FP, by = "CATEGORIE_FP") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, linetype = Indicateur, color = Categorie_fp)) +
theme_minimal() + ylab("Indice") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Net
Code
`INDICE-TRAITEMENT-FP` %>%
filter(INDICATEUR == "NSALNF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
left_join(CATEGORIE_FP, by = "CATEGORIE_FP") %>%
quarter_to_date %>%
arrange(date) %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Categorie_fp)) +
theme_minimal() + ylab("Indice Net") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(INDICATEUR == "NSALBF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
left_join(CATEGORIE_FP, by = "CATEGORIE_FP") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Categorie_fp)) +
theme_minimal() + ylab("Indice Brut") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Indice de traitement brut dans la fonction publique de l’État
Tous
Nominal
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme_minimal() + ylab("Indice, Tous") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Indice Net
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T",
INDICATEUR == "NSALNF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement net, nominal` = OBS_VALUE,
`Indice de traitement net, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Tous") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T",
INDICATEUR == "NSALBF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement brut, nominal` = OBS_VALUE,
`Indice de traitement brut, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Tous") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur, `Nominal` = OBS_VALUE,
`Réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice, Tous") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut, réel IPC IPCH
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur,
`Nominal` = OBS_VALUE,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice de traitement dans la fonction publique de l'État") + xlab("") +
scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Ratio Net/brut
Annuel
Code
net_brut_annuel <- `INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
arrange(date) %>%
select(date, OBS_VALUE, Indicateur) %>%
spread(Indicateur, OBS_VALUE) %>%
transmute(date, net_brut = `Indice de traitement net`/`Indice de traitement brut`) %>%
filter(month(date) == 1) %>%
slice(1, 1:n(), n()) %>%
mutate(date = case_when(row_number() == n() ~ Sys.Date(),
row_number() == 1 ~ as.Date("1960-01-01"),
TRUE ~ date)) %>%
complete(date = seq.Date(min(date), max(date), by = "year")) %>%
fill(net_brut)
save(net_brut_annuel, file = "INDICE-TRAITEMENT-FP-net-brut-annuel.RData")
net_brut_annuel %>%
ggplot() + geom_line(aes(x = date, y = net_brut-1)) +
theme_minimal() + ylab("Ratio net/brut") + xlab("") +
scale_color_manual(values = c("#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-1,1, 0.01),
labels = percent_format(a = 1))
Trimestriel
Code
net_brut_trimestriel <- `INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
arrange(date) %>%
select(date, OBS_VALUE, Indicateur) %>%
spread(Indicateur, OBS_VALUE) %>%
transmute(date, net_brut = `Indice de traitement net`/`Indice de traitement brut`) %>%
slice(1, 1:n(), n()) %>%
mutate(date = case_when(row_number() == n() ~ Sys.Date(),
row_number() == 1 ~ as.Date("1960-01-01"),
TRUE ~ date)) %>%
complete(date = seq.Date(min(date), max(date), by = "quarter")) %>%
fill(net_brut)
save(net_brut_trimestriel, file = "INDICE-TRAITEMENT-FP-net-brut-trimestriel.RData")
net_brut_trimestriel %>%
ggplot() + geom_line(aes(x = date, y = net_brut-1)) +
theme_minimal() + ylab("Ratio net/brut") + xlab("") +
scale_color_manual(values = c("#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-1,1, 0.01),
labels = percent_format(a = 1))
Mensuel
Code
net_brut_mensuel <- `INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
arrange(date) %>%
select(date, OBS_VALUE, Indicateur) %>%
spread(Indicateur, OBS_VALUE) %>%
transmute(date, net_brut = `Indice de traitement net`/`Indice de traitement brut`) %>%
slice(1, 1:n(), n()) %>%
mutate(date = case_when(row_number() == n() ~ Sys.Date(),
row_number() == 1 ~ as.Date("1960-01-01"),
TRUE ~ date)) %>%
complete(date = seq.Date(min(date), max(date), by = "month")) %>%
fill(net_brut)
save(net_brut_mensuel, file = "INDICE-TRAITEMENT-FP-net-brut-mensuel.RData")
net_brut_mensuel %>%
ggplot() + geom_line(aes(x = date, y = net_brut-1)) +
theme_minimal() + ylab("Ratio net/brut") + xlab("") +
scale_color_manual(values = c("#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-1,1, 0.01),
labels = percent_format(a = 1))
Indice Net/brut, réel IPC IPCH
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "T") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice de traitement dans la FP de l'État") + xlab("") +
scale_color_manual(values = c("#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1921, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Catégorie A
Nominal
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie A") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Indice Net
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A",
INDICATEUR == "NSALNF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement net, nominal` = OBS_VALUE,
`Indice de traitement net, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie A") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A",
INDICATEUR == "NSALBF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement brut, nominal` = OBS_VALUE,
`Indice de traitement brut, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie A") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur, `Nominal` = OBS_VALUE,
`Réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie A") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut, réel IPC IPCH
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "A") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur,
`Nominal` = OBS_VALUE,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice de traitement dans la fonction publique de l'État, Cat. A") + xlab("") +
scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Catégorie B
Nominal
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie B") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Indice Net
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B",
INDICATEUR == "NSALNF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement net, nominal` = OBS_VALUE,
`Indice de traitement net, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie B") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B",
INDICATEUR == "NSALBF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement brut, nominal` = OBS_VALUE,
`Indice de traitement brut, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie B") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur, `Nominal` = OBS_VALUE,
`Réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie B") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut, réel IPC IPCH
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur,
`Nominal` = OBS_VALUE,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice de traitement dans la fonction publique de l'État, Cat. B") + xlab("") +
scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Catégorie C
Nominal
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "B") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
ggplot() + geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie C") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Indice Net
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "C",
INDICATEUR == "NSALNF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement net, nominal` = OBS_VALUE,
`Indice de traitement net, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie C") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "C",
INDICATEUR == "NSALBF") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, `Indice de traitement brut, nominal` = OBS_VALUE,
`Indice de traitement brut, réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + ylab("Indice, Catégorie C") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice Net/brut, réel IPC IPCH
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "C") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur,
`Nominal` = OBS_VALUE,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice de traitement dans la fonction publique de l'État, Cat. C") + xlab("") +
scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.18, 0.24),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 2))
Indice Net/brut
Code
`INDICE-TRAITEMENT-FP` %>%
filter(CATEGORIE_FP == "C") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
quarter_to_date %>%
left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Indicateur, `Nominal` = OBS_VALUE,
`Réel` = IPCH[1]*OBS_VALUE/IPCH) %>%
gather(variable, value, -date, -Indicateur) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Indicateur)) +
theme_minimal() + ylab("Indice, Catégorie C") + xlab("") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))