Salaire moyen par tête - SMPT (données CVS)
Data - INSEE
Info
Données sur les salaires
| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| insee | t_salaire_val | Salaire moyen par tête - SMPT (données CVS) | 2026-01-15 | 2026-01-10 |
| dares | les-indices-de-salaire-de-base | Les indices de salaire de base | 2025-12-15 | 2025-12-15 |
| insee | CNA-2014-RDB | Revenu et pouvoir d’achat des ménages | 2026-01-15 | 2026-01-15 |
| insee | CNT-2014-CSI | Comptes de secteurs institutionnels | 2026-01-15 | 2026-01-15 |
| insee | ECRT2023 | Emploi, chômage, revenus du travail - Edition 2023 | 2026-01-15 | 2023-06-30 |
| insee | INDICE-TRAITEMENT-FP | Indice de traitement brut dans la fonction publique de l'État | 2026-01-15 | 2026-01-15 |
| insee | SALAIRES-ACEMO | Indices trimestriels de salaires dans le secteur privé - Résultats par secteur d’activité | 2026-01-15 | 2026-01-15 |
| insee | SALAIRES-ACEMO-2017 | Indices trimestriels de salaires dans le secteur privé | 2026-01-15 | 2026-01-15 |
| insee | SALAIRES-ANNUELS | Salaires annuels | 2026-01-15 | 2026-01-15 |
| insee | if230 | Séries longues sur les salaires dans le secteur privé | 2026-01-15 | 2021-12-04 |
| insee | ir_salaires_SL_23_csv | NA | NA | NA |
| insee | ir_salaires_SL_csv | NA | NA | NA |
| insee | t_7401 | NA | NA | NA |
Structure
Bibliographie
Français
“Mesurer”le” pouvoir d’achat”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“Inflation en France: IPC ou IPCH ?”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“La taxe inflationniste, le pouvoir d’achat, le taux d’épargne et le déficit public”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
variable
Code
t_salaire_val %>%
group_by(variable) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional| variable | Nobs |
|---|---|
| (DE) à (C5) | 307 |
| (DE) à (MN), (RU) | 307 |
| (GZ) à (MN), (RU) | 307 |
| AZ | 307 |
| C | 307 |
| C1 | 307 |
| C2 | 307 |
| C3 | 307 |
| C4 | 307 |
| C5 | 307 |
| DE | 307 |
| FZ | 307 |
| GZ | 307 |
| HZ | 307 |
| IZ | 307 |
| JZ | 307 |
| KZ | 307 |
| LZ | 307 |
| MN | 307 |
| OQ | 307 |
| RU | 307 |
| TOTAL | 307 |
date
Code
t_salaire_val %>%
group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditional()2021, Trimestre 3
Code
t_salaire_val %>%
filter(date %in% c(as.Date("2023-01-01"), as.Date("2011-07-01"))) %>%
spread(date, value) %>%
mutate(evolution = 100*((`2023-01-01`/`2011-07-01`)^(1/10)-1)) %>%
arrange(-`2023-01-01`) %>%
print_table_conditional()| variable | 2011-07-01 | 2023-01-01 | evolution |
|---|---|---|---|
| JZ | 12600.94 | 16503.25 | 2.7345809 |
| C4 | 11463.33 | 15034.31 | 2.7489212 |
| C2 | 13343.82 | 15027.50 | 1.1953732 |
| KZ | 11147.74 | 14848.12 | 2.9078403 |
| C3 | 10573.22 | 12630.24 | 1.7935905 |
| DE | 10228.66 | 12154.52 | 1.7400407 |
| LZ | 10001.90 | 11789.30 | 1.6577636 |
| C5 | 9067.57 | 11267.42 | 2.1958727 |
| (DE) à (C5) | 9034.86 | 11103.29 | 2.0829062 |
| MN | 8808.78 | 11044.55 | 2.2876559 |
| C | 8917.24 | 10989.54 | 2.1115588 |
| FZ | 8486.39 | 10504.89 | 2.1566993 |
| (DE) à (MN), (RU) | 8411.13 | 10481.90 | 2.2253407 |
| (GZ) à (MN), (RU) | 8250.34 | 10349.95 | 2.2931708 |
| TOTAL | 7852.10 | 9811.52 | 2.2527619 |
| HZ | 8202.66 | 9444.87 | 1.4201217 |
| GZ | 7305.92 | 9091.92 | 2.2111017 |
| OQ | 6746.30 | 8470.64 | 2.3022198 |
| C1 | 6522.66 | 8205.92 | 2.3222906 |
| RU | 6270.20 | 7693.18 | 2.0663185 |
| IZ | 5848.40 | 7154.44 | 2.0361016 |
| AZ | 6218.94 | 5965.15 | -0.4157859 |
Valeurs en Euros
KZ, JZ, C4
All
Code
t_salaire_val %>%
filter(variable %in% c("KZ", "JZ", "C4")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
1990-
Code
t_salaire_val %>%
filter(variable %in% c("KZ", "JZ", "C4"),
date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T2-
Code
t_salaire_val %>%
filter(variable %in% c("KZ", "JZ", "C4"),
date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
C2, C3, C4, C5
All
Code
t_salaire_val %>%
filter(variable %in% c("C2", "C3", "C4", "C5")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
1990-
Code
t_salaire_val %>%
filter(variable %in% c("C2", "C3", "C4", "C5"),
date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T2-
Code
t_salaire_val %>%
filter(variable %in% c("C2", "C3", "C4", "C5"),
date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
Agriculture, Industrie, Total
Value
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
1990-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
1996-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("1996-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2012-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2012-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2012-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2017-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T1-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2017-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T2-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2019T4-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2019-10-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2019-10-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2021T3-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2021-07-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr()
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 1),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2021T4-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "AZ", "C"),
date >= as.Date("2021-10-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr()
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 1),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
Services Marchands, Total, Non Marchands
1990-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
1996-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("1996-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2012-
Code
t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2012-01-01")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2012-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2017-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T1-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2017-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2017T2-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2019T4-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2019-10-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2021T2-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2021-04-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2021T3-
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2021-07-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2021T4-
Nominal
Code
df <- t_salaire_val %>%
filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
date >= as.Date("2021-10-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr %>%
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))