Salaire moyen par tête - SMPT (données CVS)
Data - Insee
Info
Données sur les salaires
source | dataset | .html | .RData |
---|---|---|---|
dares | les-indices-de-salaire-de-base | 2024-11-04 | 2024-09-21 |
insee | CNA-2014-RDB | 2024-11-09 | 2024-11-09 |
insee | CNT-2014-CSI | 2024-11-09 | 2024-11-09 |
insee | ECRT2023 | 2024-11-09 | 2023-06-30 |
insee | if230 | 2024-11-09 | 2021-12-04 |
insee | INDICE-TRAITEMENT-FP | 2024-11-09 | 2024-11-09 |
insee | ir_salaires_SL_23_csv | 2024-11-09 | NA |
insee | ir_salaires_SL_csv | 2024-11-09 | NA |
insee | SALAIRES-ACEMO | 2024-11-09 | 2024-11-09 |
insee | SALAIRES-ACEMO-2017 | 2024-11-09 | 2024-11-09 |
insee | SALAIRES-ANNUELS | 2024-11-09 | 2024-11-09 |
insee | t_7401 | 2024-10-18 | 2024-10-18 |
insee | t_salaire_val | 2024-11-05 | 2024-09-02 |
Structure
Bibliographie
Français
“Mesurer”le” pouvoir d’achat”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“Inflation en France: IPC ou IPCH ?”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“La taxe inflationniste, le pouvoir d’achat, le taux d’épargne et le déficit public”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
variable
Code
%>%
t_salaire_val group_by(variable) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
variable | Nobs |
---|---|
(DE) à (C5) | 302 |
(DE) à (MN), (RU) | 302 |
(GZ) à (MN), (RU) | 302 |
AZ | 302 |
C | 302 |
C1 | 302 |
C2 | 302 |
C3 | 302 |
C4 | 302 |
C5 | 302 |
DE | 302 |
FZ | 302 |
GZ | 302 |
HZ | 302 |
IZ | 302 |
JZ | 302 |
KZ | 302 |
LZ | 302 |
MN | 302 |
OQ | 302 |
RU | 302 |
TOTAL | 302 |
date
Code
%>%
t_salaire_val group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditional()
2021, Trimestre 3
Code
%>%
t_salaire_val filter(date %in% c(as.Date("2023-01-01"), as.Date("2011-07-01"))) %>%
spread(date, value) %>%
mutate(evolution = 100*((`2023-01-01`/`2011-07-01`)^(1/10)-1)) %>%
arrange(-`2023-01-01`) %>%
print_table_conditional()
variable | 2011-07-01 | 2023-01-01 | evolution |
---|---|---|---|
JZ | 12600.44 | 16176.99 | 2.5300574 |
C4 | 11459.67 | 14858.24 | 2.6312281 |
KZ | 11152.06 | 14760.36 | 2.8428694 |
C2 | 13324.20 | 14615.38 | 0.9292153 |
C3 | 10572.97 | 12606.25 | 1.7744799 |
DE | 10225.66 | 11841.71 | 1.4780953 |
LZ | 9999.96 | 11809.12 | 1.6768135 |
C5 | 9069.05 | 11373.90 | 2.2903727 |
(DE) à (C5) | 9034.88 | 11126.20 | 2.1039274 |
C | 8917.54 | 11048.00 | 2.1654048 |
MN | 8808.99 | 11033.89 | 2.2775352 |
FZ | 8481.11 | 10486.59 | 2.1452461 |
(DE) à (MN), (RU) | 8410.05 | 10453.75 | 2.1991663 |
(GZ) à (MN), (RU) | 8249.55 | 10310.54 | 2.2551324 |
TOTAL | 7850.94 | 9790.96 | 2.2328250 |
HZ | 8201.12 | 9558.40 | 1.5432837 |
GZ | 7304.48 | 9176.53 | 2.3078407 |
OQ | 6745.16 | 8464.68 | 2.2967483 |
C1 | 6521.89 | 8271.56 | 2.4050551 |
RU | 6267.34 | 7659.26 | 2.0258815 |
IZ | 5847.97 | 6668.54 | 1.3217221 |
AZ | 6216.56 | 5992.65 | -0.3661578 |
Valeurs en Euros
KZ, JZ, C4
All
Code
%>%
t_salaire_val filter(variable %in% c("KZ", "JZ", "C4")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = ""))
1990-
Code
%>%
t_salaire_val filter(variable %in% c("KZ", "JZ", "C4"),
>= as.Date("1990-01-01")) %>%
date group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = ""))
2017T2-
Code
%>%
t_salaire_val filter(variable %in% c("KZ", "JZ", "C4"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
C2, C3, C4, C5
All
Code
%>%
t_salaire_val filter(variable %in% c("C2", "C3", "C4", "C5")) %>%
group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = ""))
1990-
Code
%>%
t_salaire_val filter(variable %in% c("C2", "C3", "C4", "C5"),
>= as.Date("1990-01-01")) %>%
date group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = ""))
2017T2-
Code
%>%
t_salaire_val filter(variable %in% c("C2", "C3", "C4", "C5"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
Agriculture, Industrie, Total
Value
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("1990-01-01")) %>%
date group_by(variable) %>%
ggplot() + ylab("Salaire moyen par tête - SMPT") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = 1000*seq(1, 300, 1),
labels = dollar_format(accuracy = 1, su = "€", pre = ""))
1990-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("1990-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("1996-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 10),
labels = dollar_format(accuracy = 1, prefix = ""))
2012-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2012-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2012-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2017-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2017-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2017T2-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2017-04-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2019T4-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2019-10-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2019-10-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2021T3-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2021-07-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr()
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 1),
labels = dollar_format(accuracy = 1, prefix = ""))
2021T4-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "AZ", "C"),
>= as.Date("2021-10-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
date_to_yearqtr()
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 1),
labels = dollar_format(accuracy = 1, prefix = ""))
Services Marchands, Total, Non Marchands
1990-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("1990-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
1996-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("1996-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
2012-
Code
%>%
t_salaire_val filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2012-01-01")) %>%
date group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("2012-01-01")]) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2017-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2017-01-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2017T2-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = value, color = variable, label = round(value, 1)))
2019T4-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2019-10-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2021T2-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2021-04-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2021T3-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2021-07-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))
2021T4-
Code
<- t_salaire_val %>%
df filter(variable %in% c("TOTAL", "OQ", "(GZ) à (MN), (RU)"),
>= as.Date("2021-10-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
%>%
date_to_yearqtr
ungroup
ggplot(data = df) + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = variable)) +
scale_x_yearqtr(labels = date_format("%Y T%q"),
breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))