Consommation effective des ménages par fonction

Data - INSEE

Info

source dataset .html .RData
insee conso-eff-fonction 2024-10-29 2022-06-14

Données sur le pouvoir d’achat

source dataset .html .RData
insee CNA-2014-RDB 2024-11-05 2024-11-05
insee CNT-2014-CSI 2024-11-05 2024-11-05
insee conso-eff-fonction 2024-10-29 2022-06-14
insee econ-gen-revenu-dispo-pouv-achat-2 2024-10-29 2024-07-05
insee reve-conso-evo-dep-pa 2024-10-29 2024-09-05
insee reve-niv-vie-individu-activite 2024-10-29 NA
insee reve-niv-vie-pouv-achat-trim 2024-10-29 2024-09-05
insee T_7401 2024-10-18 2024-10-18
insee t_men_val 2024-10-29 2024-09-02
insee t_pouvachat_val 2024-10-29 2024-09-04
insee t_recapAgent_val 2024-10-29 2024-09-02
insee t_salaire_val 2024-11-03 2024-09-02
oecd HH_DASH 2024-09-15 2023-09-09

LAST_COMPILE

LAST_COMPILE
2024-11-05

Dernière

Code
`conso-eff-fonction` %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(year)) %>%
  head(2) %>%
  print_table_conditional()
year Nobs
2021 882
2020 882

Données reliées

  • Consommation des ménages - CNA-2014-CONSO-MEN. html
  • Consommation effective des ménages par produit - conso-eff-produit. html
  • Consommation effective des ménages par durabilite - conso-eff-durabilite. html

Sources

  • Comptes de la Nation 2022 - Consommation. html
  • Comptes de la Nation 2020 - Consommation. html
  • Comptes de la Nation 2019 - Consommation. html

Info

Les tableaux détaillés présentent la consommation effective des ménages depuis 1959 jusqu’à l’année du compte provisoire, déclinée aux niveaux diffusables les plus fins des nomenclatures de produits (Nomenclature agrégée), de fonction (COICOP) et de durabilité.

Pour chaque nomenclature (produit, fonction durabilité), les résultats détaillés ont le format suivant :

  1. Séries en niveau :
    • Consommation aux prix courants (onglet M€cour), que l’on appelle aussi “en valeur” ou “en euros courants”
    • Consommation en volume aux prix de l’année précédente chaînés (onglet M€2014), que l’on appelle aussi ““en volume”” ou en ““euros 2014”“. Les consommations en volume au prix de l’année précédente chaînée ne sont pas sommables. En conséquence, la somme des consommations en volume aux prix de l’année précédente chaîné des séries élémentaires constituant un niveau diffère de la consommation pour le niveau total de l’agrégat.
    • Indices de prix base 100 en 2014 (onglet Iprix2014)
  2. Séries en évolution n/n-1 :
    • Indices de valeur base 100 l’année précédente (onglet Ival)
    • Indices de volume base 100 l’année précédente (onglet Ivol)
    • Indices de prix base 100 l’année précédente (onglet Iprix)
  3. Structure des séries :
    • Coefficients budgétaires aux prix courants en % (onglet Coeffcour)

variable

Code
`conso-eff-fonction` %>%
  group_by(variable) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
variable Nobs
Coeffcour 9261
Iprix2014 9261
Ival 9114
Ivol 9114
M€2014 9261
M€cour 9261

fonction, Fonction

Tous

Code
`conso-eff-fonction` %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

2-digit

Code
`conso-eff-fonction` %>%
  filter(nchar(fonction) == 2) %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
fonction Fonction Nobs
01 Produits alimentaires et boissons non alcoolisées 376
02 Boissons alcoolisées et tabac 376
03 Articles d'habillement et chaussures 376
04 Logement, eau, gaz, électricité et autres combustibles 376
05 Meubles, articles de ménage et entretien courant de l'habitation 376
06 Santé 376
07 Transports 376
08 Communications 376
09 Loisirs et culture 376
10 Éducation 376
11 Hôtels, cafés et restaurants 376
12 Biens et services divers 376
13 Dépense de consommation finale individualisable des ISBLSM 376
14 Dépense de consommation finale individualisable des APU 376
15 Solde territorial 376

3-digit

Code
`conso-eff-fonction` %>%
  filter(nchar(fonction) == 4) %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

4-digit

Code
`conso-eff-fonction` %>%
  filter(nchar(fonction) == 6) %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

5-digit

Code
`conso-eff-fonction` %>%
  filter(nchar(fonction) == 8) %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
fonction Fonction Nobs
09.2.1-2 Autres biens durables culturels et récréatifs neufs 376
12.1.2-3 Appareils et produits pour soins corporels 376

Autres

Code
`conso-eff-fonction` %>%
  filter(!(nchar(fonction) %in% c(2, 4, 6))) %>%
  group_by(fonction, Fonction) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
fonction Fonction Nobs
01..12+15 Dépense de consommation des ménages 376
01..12+15 (HS) Dépense de consommation des ménages hors SIFIM 376
09.2.1-2 Autres biens durables culturels et récréatifs neufs 376
12.1.2-3 Appareils et produits pour soins corporels 376
NA Consommation effective des ménages 376

year

Code
`conso-eff-fonction` %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(year)) %>%
  print_table_conditional()

2020

Désordonné

Code
`conso-eff-fonction` %>%
  filter(variable == "M€cour") %>%
  year_to_date2 %>%
  left_join(gdp, by = "date") %>%
  filter(date == as.Date("2020-01-01")) %>%
  select(-date) %>%
  mutate(`% du PIB` = (100*value/(gdp)) %>% round(., digits = 2),
         value = round(value) %>% paste0(" Mds€")) %>%
  select(-gdp) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Ordonné

Code
`conso-eff-fonction` %>%
  filter(variable == "M€cour") %>%
  year_to_date2 %>%
  left_join(gdp, by = "date") %>%
  filter(date == as.Date("2020-01-01")) %>%
  select(-date) %>%
  arrange(-value) %>%
  mutate(`% du PIB` = (100*value/(gdp)) %>% round(., digits = 2),
         value = round(value) %>% paste0(" Mds€")) %>%
  select(-gdp) %>%
  print_table_conditional()

Loyers réels, loyers imputés

Mds €

Code
`conso-eff-fonction` %>%
  filter(variable == "M€cour") %>%
  year_to_date2 %>%
  filter(fonction %in% c("04.1", "04.2", "04.5")) %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Consommation (Milliards€)") + xlab("") +
  geom_line(aes(x = date, y = value/1000, color = Fonction)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.91)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 500, 20),
                     labels = dollar_format(acc = 1, pre = "", su = " Mds€"))

% de la consommation

Code
`conso-eff-fonction` %>%
  filter(variable == "M€cour") %>%
  year_to_date2 %>%
  filter(fonction %in% c("04.1", "04.2", "04.5")) %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Consommation (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/(gdp), color = Fonction)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.91)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  
  scale_y_continuous(breaks = 0.01*seq(0, 100, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

Entretien et réparation des logements

Code
`conso-eff-fonction` %>%
  filter(variable == "M€cour") %>%
  year_to_date2 %>%
  filter(fonction %in% c("04.3", "04.4")) %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Consommation (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/(gdp), color = Fonction)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.6, 0.2)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  
  scale_y_continuous(breaks = 0.01*seq(0, 100, 0.1),
                     labels = scales::percent_format(accuracy = 0.1))

Indices de Prix

Tous

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014",
         year %in% c("1990", "2020")) %>%
  select(-variable) %>%
  spread(year, value) %>%
  mutate(`% / an` = round(100*((`2020`/`1990`)^(1/30)-1), 2)) %>%
  arrange(`% / an`) %>%
  print_table_conditional()

Déflateurs

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(Fonction %in% c("Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM",
                         "Consommation effective des ménages"))  %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1960, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 300, 10)) +
  
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank())

Loyers effectifs, imputés

All

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(fonction %in% c("04.1", "04.2"))  %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1960, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 300, 10)) +
  
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank())

1996-

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(fonction %in% c("04.1", "04.2"))  %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1996, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(100, 300, 10)) +
  
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank())

Forts effets qualité

1972-

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(fonction %in% c("08.2", "09.1.3", "09.1.2", "09.1.1", "12.6.1"))  %>%
  filter(date >= as.Date("1972-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1960, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 400, 800, 1600)) +
  theme(legend.position = c(0.35, 0.2),
        legend.title = element_blank())

1990-

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(fonction %in% c("08.2", "09.1.3", "09.1.2", "09.1.1", "12.6.1"))  %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1960, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100)) +
  theme(legend.position = c(0.35, 0.2),
        legend.title = element_blank())

1996-

Code
`conso-eff-fonction` %>%
  filter(variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(fonction %in% c("08.2", "09.1.3", "09.1.2", "09.1.1", "12.6.1"))  %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(fonction) %>%
  arrange(date) %>%
  mutate(value = 100*value/value[1]) %>%
  ggplot + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = value, color = Fonction)) +
  scale_x_date(breaks = seq(1960, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = c(0.1, 1, 2, 3, 5, 10, 20, 30, 50, 100)) +
  theme(legend.position = c(0.35, 0.2),
        legend.title = element_blank())

Poids

% de la dépense de consommation finale effective

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("1960", "1990", "2020")) %>%
  select(-variable) %>%
  spread(year, value) %>%
  arrange(-`2020`) %>%
  print_table_conditional()

09.1 (Matériel audiovisuel, photographique et informatique), 08.2 (Matériel de téléphonie et de télécopie)

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         fonction %in% c("09.1", "08.2", "12.6")) %>%
  year_to_date2 %>%
  mutate(value = value / 100) %>%
  ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.28, 0.93),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
                     labels = percent_format(accuracy = .1))

14, 01..12+15

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         fonction %in% c("14", "01..12+15")) %>%
  year_to_date2 %>%
  mutate(value = value / 100) %>%
  ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.4, 0.6),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
                     labels = percent_format(accuracy = 1))

14.1, 14.2, 14.3, 14.4, 14.5

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         fonction %in% c("14.1", "14.2", "14.3", "14.4", "14.5")) %>%
  year_to_date2 %>%
  mutate(value = value / 100) %>%
  ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
  #
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.2, 0.88),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = percent_format(accuracy = 1))

04.1, 04.2, 04.5

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         fonction %in% c("04.1", "04.2", "04.5")) %>%
  year_to_date2 %>%
  mutate(value = value / 100) %>%
  ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
  #
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.28, 0.93),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
                     labels = percent_format(accuracy = .1))

Santé

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         fonction %in% c("14.2", "06", "12.5.3")) %>%
  year_to_date2 %>%
  mutate(value = value / 100) %>%
  ggplot() + ylab("Pondération (% de la conso effective totale)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = paste0(fonction, " - ", Fonction))) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.93),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 300, .5),
                     labels = percent_format(accuracy = .1))

% de la dépense de consommation finale

All

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("1960", "1990", "2020")) %>%
  select(-variable) %>%
  group_by(year) %>%
  arrange(fonction) %>%
  mutate(value = round(100*value/value[Fonction == "Dépense de consommation des ménages"],2)) %>%
  spread(year, value) %>%
  print_table_conditional()

2-digit

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("1960", "1990", "2020"),
         nchar(fonction) == 2 | fonction == "01..12+15") %>%
  select(-variable) %>%
  group_by(year) %>%
  arrange(fonction) %>%
  mutate(value = round(100*value/value[Fonction == "Dépense de consommation des ménages"],2)) %>%
  spread(year, value) %>%
  print_table_conditional()
fonction Fonction 1960 1990 2020
01 Produits alimentaires et boissons non alcoolisées 25.07 14.89 15.02
01..12+15 Dépense de consommation des ménages 100.00 100.00 100.00
02 Boissons alcoolisées et tabac 7.13 3.42 4.39
03 Articles d'habillement et chaussures 11.95 6.79 3.14
04 Logement, eau, gaz, électricité et autres combustibles 11.45 20.13 28.38
05 Meubles, articles de ménage et entretien courant de l'habitation 8.54 6.19 4.88
06 Santé 2.41 3.23 4.05
07 Transports 10.58 15.09 11.77
08 Communications 0.60 2.10 2.56
09 Loisirs et culture 7.09 8.58 7.58
10 Éducation 0.31 0.35 0.49
11 Hôtels, cafés et restaurants 6.67 6.17 5.53
12 Biens et services divers 7.41 13.74 12.80
13 Dépense de consommation finale individualisable des ISBLSM 3.08 2.59 4.15
14 Dépense de consommation finale individualisable des APU 14.21 23.59 31.87
15 Solde territorial 0.78 -0.67 -0.59

3-digit

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("1960", "1990", "2020"),
         nchar(fonction) == 4 | fonction == "01..12+15") %>%
  select(-variable) %>%
  group_by(year) %>%
  arrange(fonction) %>%
  mutate(value = round(100*value/value[Fonction == "Dépense de consommation des ménages"],2)) %>%
  spread(year, value) %>%
  print_table_conditional()

4-digit

Code
`conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("1960", "1990", "2020"),
         nchar(fonction) == 6 | fonction == "01..12+15") %>%
  select(-variable) %>%
  group_by(year) %>%
  arrange(fonction) %>%
  mutate(value = round(100*value/value[Fonction == "Dépense de consommation des ménages"],2)) %>%
  spread(year, value) %>%
  print_table_conditional()

Comparer IPC, IPCH, Déflateur de la consommation

Table Déflateur

Code
deflateur <- `conso-eff-fonction` %>%
  filter(variable == "Iprix2014",
         year %in% c("1990", "2020"),
         nchar(fonction) %in% c(2, 4, 6)) %>%
  mutate(fonction = gsub("\\.", "", fonction)) %>%
  select(fonction, Fonction, year, value) %>%
  spread(year, value) %>%
  mutate(`Déflateur (%)` = round(100*((`2020`/`1990`)^(1/30)-1),2)) %>%
  select(-`1990`, -`2020`)

deflateur %>%
  print_table_conditional

Table Déflateur Poids

Code
deflateur_poids <- `conso-eff-fonction` %>%
  filter(variable == "Coeffcour",
         year %in% c("2020"),
         nchar(fonction) %in% c(2, 4, 6)) %>%
  mutate(fonction = gsub("\\.", "", fonction)) %>%
  select(fonction, Fonction, year, value) %>%
  spread(year, value) %>%
  rename(`Déflateur Poids` = `2020`)

deflateur_poids %>%
  print_table_conditional

Table IPC

Code
IPC <- `IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         MENAGES_IPC == "ENSEMBLE",
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE",
         TIME_PERIOD %in% c("1990-01", "2020-01")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  select(fonction = COICOP2016, Fonction = Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  filter(!(fonction %in% c("SO", "00"))) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(`IPC (%)` = round(100*((`2020-01`/`1990-01`)^(1/30)-1),2)) %>%
  select(-`1990-01`, -`2020-01`)

IPC %>%
  print_table_conditional()

Table IPC Poids

Code
IPC_poids <- `IPC-2015` %>%
  filter(INDICATEUR == "IPC",
         REF_AREA == "FE",
         MENAGES_IPC == "ENSEMBLE",
         NATURE == "POND",
         TIME_PERIOD %in% c("2020")) %>%
  left_join(COICOP2016, by = "COICOP2016") %>%
  select(fonction = COICOP2016, Fonction = Coicop2016, TIME_PERIOD, OBS_VALUE) %>%
  filter(!(fonction %in% c("SO", "00"))) %>%
  mutate(OBS_VALUE = OBS_VALUE/100) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  rename(`IPC Poids` = `2020`)

IPC_poids %>%
  print_table_conditional()

Comparer Table Déflateur VS IPC

Tous

Code
deflateur %>%
  inner_join(IPC, by = "fonction") %>%
  mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
  arrange(Difference) %>%
  print_table_conditional()

2-digit

Code
deflateur %>%
  inner_join(IPC, by = "fonction") %>%
  filter(nchar(fonction) == 2) %>%
  mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
  arrange(Difference) %>%
  print_table_conditional()
fonction Fonction.x Déflateur (%) Fonction.y IPC (%) Difference
08 Communications -4.30 08 - Communications -1.80 -2.50
12 Biens et services divers 0.48 12 - Biens et services divers 1.91 -1.43
09 Loisirs et culture -0.63 09 - Loisirs et culture 0.05 -0.68
05 Meubles, articles de ménage et entretien courant de l'habitation 0.62 05 - Meubles, articles de ménage et entretien courant du foyer 1.02 -0.40
07 Transports 1.75 07 - Transports 2.14 -0.39
02 Boissons alcoolisées et tabac 3.99 02 - Boissons alcoolisées, tabac et stupéfiants 4.33 -0.34
04 Logement, eau, gaz, électricité et autres combustibles 2.20 04 - Logement, eau, gaz, électricité et autres combustibles 2.36 -0.16
11 Hôtels, cafés et restaurants 2.34 11 - Restaurants et hôtels 2.47 -0.13
10 Éducation 2.16 10 - Enseignement 2.28 -0.12
01 Produits alimentaires et boissons non alcoolisées 1.49 01 - Produits alimentaires et boissons non alcoolisées 1.52 -0.03
03 Articles d'habillement et chaussures 0.54 03 - Articles d'habillement et chaussures 0.33 0.21
06 Santé 0.40 06 - Santé 0.19 0.21

3-digit

Code
deflateur %>%
  inner_join(IPC, by = "fonction") %>%
  filter(nchar(fonction) == 3) %>%
  mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
  arrange(Difference) %>%
  print_table_conditional()

4-digit

Code
deflateur %>%
  inner_join(IPC, by = "fonction") %>%
  filter(nchar(fonction) == 4) %>%
  mutate(Difference = `Déflateur (%)`-`IPC (%)`) %>%
  arrange(Difference) %>%
  print_table_conditional()

Comparer Poids Déflateur VS IPC

Code
deflateur_poids %>%
  inner_join(IPC_poids, by = "fonction") %>%
  mutate(Difference = `Déflateur Poids`-`IPC Poids`) %>%
  arrange(Difference) %>%
  print_table_conditional()

2-digit

00 - Tous

1996-

Code
`conso-eff-fonction` %>%
  filter(Fonction %in% c("Consommation effective des ménages",
                         "Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM"),
         variable == "Iprix2014") %>%
  mutate(Fonction = ifelse(Fonction == "Consommation effective des ménages",
                           "Dépense de consommation effective des ménages",
                           Fonction)) %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  select(variable = Fonction, date, value) %>%
  mutate(variable = paste0("Déflateur de la ", variable)) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     PRIX_CONSO == "SO",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  bind_rows(`IPCH-2015` %>%
              filter(INDICATEUR == "IPCH",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  group_by(variable) %>%
  filter(date >= as.Date("1996-01-01")) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  #
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2000-

Code
`conso-eff-fonction` %>%
  filter(Fonction %in% c("Consommation effective des ménages",
                         "Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM"),
         variable == "Iprix2014") %>%
  mutate(Fonction = ifelse(Fonction == "Consommation effective des ménages",
                           "Dépense de consommation effective des ménages",
                           Fonction)) %>%
  year_to_date2 %>%
  filter(date >= as.Date("2000-01-01")) %>%
  select(variable = Fonction, date, value) %>%
  mutate(variable = paste0("Déflateur de la ", variable)) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     PRIX_CONSO == "SO",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  bind_rows(`IPCH-2015` %>%
              filter(INDICATEUR == "IPCH",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  group_by(variable) %>%
  filter(date >= as.Date("2000-01-01")) %>%
  mutate(value = 100*value/value[date == as.Date("2000-01-01")]) %>%
  mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  #
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

2017-

Code
`conso-eff-fonction` %>%
  filter(Fonction %in% c("Consommation effective des ménages",
                         "Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM"),
         variable == "Iprix2014") %>%
  mutate(Fonction = ifelse(Fonction == "Consommation effective des ménages",
                           "Dépense de consommation effective des ménages",
                           Fonction)) %>%
  year_to_date2 %>%
  filter(date >= as.Date("2017-01-01")) %>%
  select(variable = Fonction, date, value) %>%
  mutate(variable = paste0("Déflateur de la ", variable)) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     PRIX_CONSO == "SO",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation (IPC)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  bind_rows(`IPCH-2015` %>%
              filter(INDICATEUR == "IPCH",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              mutate(variable = "Indice des Prix à la Consommation Harmonisé (IPCH)") %>%
              select(variable, date, value = OBS_VALUE)) %>%
  group_by(variable) %>%
  filter(date >= as.Date("2017-01-01")) %>%
  mutate(value = 100*value/value[date == as.Date("2017-01-01")]) %>%
  mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  #
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

00 - Tous

All

2000-
Code
`conso-eff-fonction` %>%
  filter(Fonction %in% c("Consommation effective des ménages",
                         "Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM"),
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  select(variable = Fonction, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
  filter(month(date) == 1) %>%
  select(variable = TITLE_FR, date, value = OBS_VALUE)
  ) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  #
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-
Code
`conso-eff-fonction` %>%
  filter(Fonction %in% c("Consommation effective des ménages",
                         "Dépense de consommation des ménages",
                         "Dépense de consommation des ménages hors SIFIM"),
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  select(variable = Fonction, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("00"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1,
                     date >= as.Date("1996-01-01")) %>%
              select(variable = TITLE_FR, date, value = OBS_VALUE)
            ) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  mutate(variable = gsub("Indice des prix à la consommation - Base 2015 - Ensemble des ménages - France - ", "", variable)) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  #
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

01 - Produits alimentaires et boissons non alcoolisées

Code
`conso-eff-fonction` %>%
  filter(fonction == "01",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
         COICOP2016 %in% c("01"),
         FREQ == "M",
         REF_AREA == "FE",
         NATURE == "INDICE") %>%
  month_to_date %>%
  filter(month(date) == 1) %>%
  select(date, value = OBS_VALUE) %>%
  mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

02 - Boissons alcoolisées et tabac

Code
`conso-eff-fonction` %>%
  filter(fonction == "02",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("02"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

03 - Articles d’habillement et chaussures

Code
`conso-eff-fonction` %>%
  filter(fonction == "03",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("03"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (03 - Habillement et chaussures)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

04 - Logement, eau, gaz, électricité et autres combustibles

Code
`conso-eff-fonction` %>%
  filter(fonction == "04",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("04"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (04 - Logement)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05 - Meubles, articles de ménage et entretien courant de l’habitation

Code
`conso-eff-fonction` %>%
  filter(fonction == "05",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("05"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (05 - Meubles)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 5),
                     labels = dollar_format(accuracy = 1, prefix = ""))

06 - Santé

Code
`conso-eff-fonction` %>%
  filter(fonction == "06",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("06"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (06 - Santé)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 1),
                     labels = dollar_format(accuracy = 1, prefix = ""))

07 - Transports

Code
`conso-eff-fonction` %>%
  filter(fonction == "07",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("07"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (07 - Transports)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

08 - Communications

All

Code
`conso-eff-fonction` %>%
  filter(fonction == "08",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("08"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (08 - Communications)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996

Code
`conso-eff-fonction` %>%
  filter(fonction == "08",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("08"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1,
                     date >= as.Date("1996-01-01")) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  ggplot() + ylab("Indice des prix (08 - Communications)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.3, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09 - Loisirs et culture

Code
`conso-eff-fonction` %>%
  filter(fonction == "09",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("09"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix (09 - Loisirs et culture)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

10 - Éducation

Code
`conso-eff-fonction` %>%
  filter(fonction == "10",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("10"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

11 - Hôtels, cafés et restaurants

Code
`conso-eff-fonction` %>%
  filter(fonction == "11",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("11"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

12 - Biens et services divers

Code
`conso-eff-fonction` %>%
  filter(fonction == "12",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("12"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

13 - Dépense de consommation finale individualisable des ISBLSM

Code
`conso-eff-fonction` %>%
  filter(fonction == "13",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

14 - Dépense de consommation finale individualisable des APU

Code
`conso-eff-fonction` %>%
  filter(fonction == "14",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

15 - Solde territorial

Code
`conso-eff-fonction` %>%
  filter(fonction == "15",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

3-digit

02.2 - Tabac

All

Code
`conso-eff-fonction` %>%
  filter(fonction == "02.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("022"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 800, 50),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`conso-eff-fonction` %>%
  filter(fonction == "02.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("022"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1,
                     date >= as.Date("1996-01-01")) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 800, 50),
                     labels = dollar_format(accuracy = 1, prefix = ""))

02.3 - Bière

Code
`conso-eff-fonction` %>%
  filter(fonction == "02.1.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0213"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 800, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

04.1 - Loyers effectifs

Code
`conso-eff-fonction` %>%
  filter(fonction == "04.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("041"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

04.3 - Entretien et réparation des logements

Code
`conso-eff-fonction` %>%
  filter(fonction == "04.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("043"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

04.4 - Autres services liés au logement

Code
`conso-eff-fonction` %>%
  filter(fonction == "04.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("044"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.1 - Meubles, articles d’ameublement, tapis et autres revêtements de sol

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("051"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.2 - Articles de ménage en textile

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("052"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.3 - Appareils ménagers

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("053"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.4 - Verrerie, vaisselle et ustensiles de ménage

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("054"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.5 - Outillage et autre matériel pour la maison et le jardin

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.5",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("055"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

05.6 - Biens et services pour l’entretien courant du foyer

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.6",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("056"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

07.2 - Dépenses d’utilisation des véhicules

Code
`conso-eff-fonction` %>%
  filter(fonction == "07.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("072"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

08.1 - Services postaux

Code
`conso-eff-fonction` %>%
  filter(fonction == "08.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("081"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

08.2 - Matériel de téléphonie et de télécopie

1990-

Code
`conso-eff-fonction` %>%
  filter(fonction == "08.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("082"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1993-01-01")]) %>%
  ggplot() + ylab("Indice des prix (1993=100)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 100),
                     labels = dollar_format(accuracy = 1, prefix = ""))

1996-

Code
`conso-eff-fonction` %>%
  filter(fonction == "08.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("082"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1,
                     date >= as.Date("1996-01-01")) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  ggplot() + ylab("Indice des prix (1996=100)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(1, 2, 3, 5, 8, 10, 20, 30, 50, 100),
                     labels = dollar_format(accuracy = 1, prefix = ""))

08.3 - Services de télécommunications

Code
`conso-eff-fonction` %>%
  filter(fonction == "08.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("083"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.1 - Matériel audiovisuel, photographique et informatique

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("091"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.2 - Autres biens durables culturels et récréatifs

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("092"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.3 - Autres articles et matériel de loisirs, de jardinage et animaux de compagnie

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("093"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.4 - Services récréatifs et culturels

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("094"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.5 - Journaux, livres et articles de papeterie

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.5",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("095"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.6 - Forfaits touristiques

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.6",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("096"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(seq(0, 500, 10), 15),
                     labels = dollar_format(accuracy = 1, prefix = ""))

12.6 - Services financiers

Code
`conso-eff-fonction` %>%
  filter(fonction == "12.6",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("126"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.7),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

14.1 - Logement

Code
`conso-eff-fonction` %>%
  filter(fonction == "14.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

14.2 - Santé

Code
`conso-eff-fonction` %>%
  filter(fonction == "14.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

14.3 - Loisirs et culture

Code
`conso-eff-fonction` %>%
  filter(fonction == "14.3",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

14.4 - Enseignement

Code
`conso-eff-fonction` %>%
  filter(fonction == "14.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

4-digit

05.6.2 - Services domestiques et services ménagers

Code
`conso-eff-fonction` %>%
  filter(fonction == "05.6.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0562"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.1.1 -

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.1.2",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0912"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.1.4

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.1.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0914"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.1.5 - Réparation de matériels audiovisuel, photographique et informatique

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.1.5",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0914"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.3),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.3.1 - Jeux, jouets et passe-temps

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.3.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0931"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

09.5.4 - Papeterie et matériel de dessin

Code
`conso-eff-fonction` %>%
  filter(fonction == "09.5.4",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  bind_rows(`IPC-2015` %>%
              filter(INDICATEUR == "IPC",
                     MENAGES_IPC == "ENSEMBLE",
                     COICOP2016 %in% c("0954"),
                     FREQ == "M",
                     REF_AREA == "FE",
                     NATURE == "INDICE") %>%
              month_to_date %>%
              filter(month(date) == 1) %>%
              select(date, value = OBS_VALUE) %>%
              mutate(variable = "Indice des Prix à la Consommation")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

12.6.1 - Services financiers indirectement mesurés

Code
`conso-eff-fonction` %>%
  filter(fonction == "12.6.1",
         variable == "Iprix2014") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  mutate(variable = "Deflateur de la Consommation") %>%
  select(variable, date, value) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot() + ylab("Indice des prix") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = value, color = variable)) +
  
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.75, 0.7),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(0, 500, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))

Différences

  • Santé est en categorie 13 et 14 dans la COICOP lorsque c’est une dépense de consommation des APU ou des IBSLM, ie dans le déflateur de la consommation finale (pareil dans l’IPCH). Dans l’IPC en revanche, la santé est incluse dans la classification n°6 ce qui apparait contradictoire…