Revenu, pouvoir d’achat et comptes des ménages - Valeurs aux prix courants
Data - Insee
Info
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2024-11-15 | 2024-11-15 |
insee | CNT-2014-CSI | 2024-11-15 | 2024-11-15 |
insee | conso-eff-fonction | 2024-11-09 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2024-11-09 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2024-11-09 | 2024-09-05 |
insee | reve-niv-vie-individu-activite | 2024-11-09 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2024-11-09 | 2024-09-05 |
insee | T_7401 | 2024-10-18 | 2024-10-18 |
insee | t_men_val | 2024-11-09 | 2024-09-02 |
insee | t_pouvachat_val | 2024-11-16 | 2024-09-04 |
insee | t_recapAgent_val | 2024-11-09 | 2024-09-02 |
insee | t_salaire_val | 2024-11-09 | 2024-09-02 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
Données sur l’épargne
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-16 |
Bibliographie en lien
Français
“Mesurer le pouvoir d’achat”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“Inflation en France: IPC ou IPCH ?”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
“La taxe inflationniste, le pouvoir d’achat, le taux d’épargne et le déficit public”, F. Geerolf, Document de travail, Juillet 2024. [pdf]
Example
- 2023T2: consommation Totale = 356,6 Mds€; revenu disponible brut = 439,2 Mds€:
Code
::percent(1-356.6/439.2, acc = 0.01) scales
# [1] "18.81%"
Données
Info
Revenu disponible brut. Il s’agit de la part du revenu qui reste à la disposition du ménage pour consommer et épargner, une fois déduits les prélèvements sociaux et les impôts.
Les ressources comprennent : - les revenus d’activité (salaires, revenus des entrepreneurs individuels…), - les revenus du patrimoine (dividendes, intérêts, loyers), - les prestations sociales (y compris les pensions de retraite et les indemnités de chômage), - les transferts courants (notamment les indemnités d’assurance nette des primes). Les charges comprennent notamment les impôts directs (impôt sur le revenu, taxe d’habitation, CSG…).
Revenu disponible brut ajusté. Il s’agit du RDB augmenté des transferts sociaux en nature, contrepartie des consommations individualisables incluses dans les dépenses des APU et des ISBLSM.
Excédent brut d’exploitation des ménages purs. L’EBE des ménages purs correspond aux revenus fonciers, issus des loyers réels ou des loyers imputés (au titre des services de logement que les ménages propriétaires se rendent à eux mêmes).
variable
Code
%>%
t_men_val left_join(variable, by = "variable") %>%
group_by(variable, Variable) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
variable | Variable | Nobs |
---|---|---|
B2 + D11 + D4 + D62 + D7 | Total des ressources | 302 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 302 |
B2_S14A | Revenu mixte | 302 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 302 |
B6 | Revenu disponible brut | 302 |
B7 | Revenu disponible brut ajusté | 302 |
D11 | Salaires et traitements bruts | 302 |
D4 | Intérêts et dividendes nets reçus | 302 |
D5 | Impôts sur le revenu et le patrimoine | 302 |
D5 + D613 + D614 + D61SC | NA | 302 |
D613 + D614 + D61SC | NA | 302 |
D62 | Prestations sociales en espèces | 302 |
D63 | Transferts sociaux en nature | 302 |
D7 | Autres ressources nettes | 302 |
date
Code
%>%
t_men_val group_by(date) %>%
summarise(Nobs = n()) %>%
arrange(desc(date)) %>%
print_table_conditional
Evolution
2017T2-
% change
Code
%>%
t_men_val filter(date %in% c(max(date), as.Date("2017-04-01"))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`% change`) %>%
print_table_conditional(.)
variable | Variable | 2017-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
D4 | Intérêts et dividendes nets reçus | 20.696 | 37.263 | 80.05 | 16.57 |
D7 | Autres ressources nettes | -2.857 | -4.176 | 46.17 | -1.32 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 50.849 | 71.579 | 40.77 | 20.73 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 77.724 | 104.675 | 34.68 | 26.95 |
B6 | Revenu disponible brut | 346.045 | 462.610 | 33.68 | 116.56 |
B7 | Revenu disponible brut ajusté | 447.826 | 592.035 | 32.20 | 144.21 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 438.975 | 575.654 | 31.14 | 136.68 |
D11 | Salaires et traitements bruts | 219.549 | 281.472 | 28.20 | 61.92 |
D63 | Transferts sociaux en nature | 101.781 | 129.425 | 27.16 | 27.64 |
D62 | Prestations sociales en espèces | 123.864 | 156.420 | 26.28 | 32.56 |
D5 | Impôts sur le revenu et le patrimoine | 56.369 | 70.390 | 24.87 | 14.02 |
B2_S14A | Revenu mixte | 26.874 | 33.096 | 23.15 | 6.22 |
D5 + D613 + D614 + D61SC | NA | 92.930 | 113.044 | 21.64 | 20.11 |
D613 + D614 + D61SC | NA | 36.561 | 42.654 | 16.67 | 6.09 |
€ change
Code
%>%
t_men_val filter(date %in% c(max(date), as.Date("2017-04-01"))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`change (Mds€)`) %>%
print_table_conditional(.)
variable | Variable | 2017-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
B7 | Revenu disponible brut ajusté | 447.826 | 592.035 | 32.20 | 144.21 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 438.975 | 575.654 | 31.14 | 136.68 |
B6 | Revenu disponible brut | 346.045 | 462.610 | 33.68 | 116.56 |
D11 | Salaires et traitements bruts | 219.549 | 281.472 | 28.20 | 61.92 |
D62 | Prestations sociales en espèces | 123.864 | 156.420 | 26.28 | 32.56 |
D63 | Transferts sociaux en nature | 101.781 | 129.425 | 27.16 | 27.64 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 77.724 | 104.675 | 34.68 | 26.95 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 50.849 | 71.579 | 40.77 | 20.73 |
D5 + D613 + D614 + D61SC | NA | 92.930 | 113.044 | 21.64 | 20.11 |
D4 | Intérêts et dividendes nets reçus | 20.696 | 37.263 | 80.05 | 16.57 |
D5 | Impôts sur le revenu et le patrimoine | 56.369 | 70.390 | 24.87 | 14.02 |
B2_S14A | Revenu mixte | 26.874 | 33.096 | 23.15 | 6.22 |
D613 + D614 + D61SC | NA | 36.561 | 42.654 | 16.67 | 6.09 |
D7 | Autres ressources nettes | -2.857 | -4.176 | 46.17 | -1.32 |
2017T2-
Code
%>%
t_men_val filter(variable %in% c("D11", "B6", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Index 100 = 2017T2") +
scale_x_date(breaks = as.Date(paste0(seq(2008, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 5)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
2019T4-
Code
%>%
t_men_val filter(variable %in% c("D11", "B6", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2019-10-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(date = zoo::as.yearqtr(paste(year(date), quarter(date), sep = "-"))) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Index 100 = 2019T4") +
::scale_x_yearqtr(labels = date_format("%YT%q"), n = 24) +
zooscale_y_log10(breaks = seq(0, 1500, 5)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text(data = . %>%
filter(date == max(date)),
aes(x = date, y = value, color = Variable, label = round(value, 1)))
2021T2-
Code
%>%
t_men_val filter(variable %in% c("B6", "D4", "D11")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2021-04-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(date = zoo::as.yearqtr(paste(year(date), quarter(date), sep = "-"))) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Indice 100 = 2021T2") +
::scale_x_yearqtr(labels = date_format("%YT%q"), n = 24) +
zooscale_y_log10(breaks = seq(0, 1500, 5)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
geom_text_repel(data = . %>%
filter(date == max(date)),
aes(x = date, y = value, color = Variable, label = round(value, 1)))
3 years
% change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(3))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`% change`) %>%
print_table_conditional(.)
variable | Variable | 2021-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
D4 | Intérêts et dividendes nets reçus | 26.048 | 37.263 | 43.06 | 11.21 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 55.563 | 71.579 | 28.82 | 16.02 |
D613 + D614 + D61SC | NA | 34.456 | 42.654 | 23.79 | 8.20 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 85.447 | 104.675 | 22.50 | 19.23 |
B6 | Revenu disponible brut | 387.249 | 462.610 | 19.46 | 75.36 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 484.451 | 575.654 | 18.83 | 91.20 |
D11 | Salaires et traitements bruts | 236.958 | 281.472 | 18.79 | 44.51 |
B7 | Revenu disponible brut ajusté | 502.898 | 592.035 | 17.72 | 89.14 |
D5 + D613 + D614 + D61SC | NA | 97.202 | 113.044 | 16.30 | 15.84 |
D5 | Impôts sur le revenu et le patrimoine | 62.745 | 70.390 | 12.18 | 7.65 |
D63 | Transferts sociaux en nature | 115.648 | 129.425 | 11.91 | 13.78 |
D62 | Prestations sociales en espèces | 140.382 | 156.420 | 11.42 | 16.04 |
B2_S14A | Revenu mixte | 29.884 | 33.096 | 10.75 | 3.21 |
D7 | Autres ressources nettes | -4.384 | -4.176 | -4.74 | 0.21 |
€ change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(3))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`change (Mds€)`) %>%
print_table_conditional(.)
variable | Variable | 2021-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
B2 + D11 + D4 + D62 + D7 | Total des ressources | 484.451 | 575.654 | 18.83 | 91.20 |
B7 | Revenu disponible brut ajusté | 502.898 | 592.035 | 17.72 | 89.14 |
B6 | Revenu disponible brut | 387.249 | 462.610 | 19.46 | 75.36 |
D11 | Salaires et traitements bruts | 236.958 | 281.472 | 18.79 | 44.51 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 85.447 | 104.675 | 22.50 | 19.23 |
D62 | Prestations sociales en espèces | 140.382 | 156.420 | 11.42 | 16.04 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 55.563 | 71.579 | 28.82 | 16.02 |
D5 + D613 + D614 + D61SC | NA | 97.202 | 113.044 | 16.30 | 15.84 |
D63 | Transferts sociaux en nature | 115.648 | 129.425 | 11.91 | 13.78 |
D4 | Intérêts et dividendes nets reçus | 26.048 | 37.263 | 43.06 | 11.21 |
D613 + D614 + D61SC | NA | 34.456 | 42.654 | 23.79 | 8.20 |
D5 | Impôts sur le revenu et le patrimoine | 62.745 | 70.390 | 12.18 | 7.65 |
B2_S14A | Revenu mixte | 29.884 | 33.096 | 10.75 | 3.21 |
D7 | Autres ressources nettes | -4.384 | -4.176 | -4.74 | 0.21 |
2 years
% change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(2))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`% change`) %>%
print_table_conditional(.)
variable | Variable | 2022-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
D4 | Intérêts et dividendes nets reçus | 28.125 | 37.263 | 32.49 | 9.14 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 56.241 | 71.579 | 27.27 | 15.34 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 86.683 | 104.675 | 20.76 | 17.99 |
B6 | Revenu disponible brut | 402.138 | 462.610 | 15.04 | 60.47 |
B7 | Revenu disponible brut ajusté | 520.917 | 592.035 | 13.65 | 71.12 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 507.557 | 575.654 | 13.42 | 68.10 |
D62 | Prestations sociales en espèces | 139.583 | 156.420 | 12.06 | 16.84 |
D613 + D614 + D61SC | NA | 38.099 | 42.654 | 11.96 | 4.56 |
D11 | Salaires et traitements bruts | 257.156 | 281.472 | 9.46 | 24.32 |
D63 | Transferts sociaux en nature | 118.779 | 129.425 | 8.96 | 10.65 |
B2_S14A | Revenu mixte | 30.442 | 33.096 | 8.72 | 2.65 |
D5 + D613 + D614 + D61SC | NA | 105.419 | 113.044 | 7.23 | 7.62 |
D7 | Autres ressources nettes | -3.990 | -4.176 | 4.66 | -0.19 |
D5 | Impôts sur le revenu et le patrimoine | 67.320 | 70.390 | 4.56 | 3.07 |
€ change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(2))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`change (Mds€)`) %>%
print_table_conditional(.)
variable | Variable | 2022-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
B7 | Revenu disponible brut ajusté | 520.917 | 592.035 | 13.65 | 71.12 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 507.557 | 575.654 | 13.42 | 68.10 |
B6 | Revenu disponible brut | 402.138 | 462.610 | 15.04 | 60.47 |
D11 | Salaires et traitements bruts | 257.156 | 281.472 | 9.46 | 24.32 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 86.683 | 104.675 | 20.76 | 17.99 |
D62 | Prestations sociales en espèces | 139.583 | 156.420 | 12.06 | 16.84 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 56.241 | 71.579 | 27.27 | 15.34 |
D63 | Transferts sociaux en nature | 118.779 | 129.425 | 8.96 | 10.65 |
D4 | Intérêts et dividendes nets reçus | 28.125 | 37.263 | 32.49 | 9.14 |
D5 + D613 + D614 + D61SC | NA | 105.419 | 113.044 | 7.23 | 7.62 |
D613 + D614 + D61SC | NA | 38.099 | 42.654 | 11.96 | 4.56 |
D5 | Impôts sur le revenu et le patrimoine | 67.320 | 70.390 | 4.56 | 3.07 |
B2_S14A | Revenu mixte | 30.442 | 33.096 | 8.72 | 2.65 |
D7 | Autres ressources nettes | -3.990 | -4.176 | 4.66 | -0.19 |
Last year
% change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(1))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`% change`) %>%
print_table_conditional(.)
variable | Variable | 2023-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
D4 | Intérêts et dividendes nets reçus | 33.763 | 37.263 | 10.37 | 3.50 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 67.433 | 71.579 | 6.15 | 4.15 |
D62 | Prestations sociales en espèces | 147.717 | 156.420 | 5.89 | 8.70 |
D613 + D614 + D61SC | NA | 40.501 | 42.654 | 5.32 | 2.15 |
D7 | Autres ressources nettes | -3.973 | -4.176 | 5.11 | -0.20 |
B6 | Revenu disponible brut | 441.093 | 462.610 | 4.88 | 21.52 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 99.855 | 104.675 | 4.83 | 4.82 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 549.993 | 575.654 | 4.67 | 25.66 |
B7 | Revenu disponible brut ajusté | 565.765 | 592.035 | 4.64 | 26.27 |
D5 + D613 + D614 + D61SC | NA | 108.900 | 113.044 | 3.81 | 4.14 |
D63 | Transferts sociaux en nature | 124.672 | 129.425 | 3.81 | 4.75 |
D11 | Salaires et traitements bruts | 272.631 | 281.472 | 3.24 | 8.84 |
D5 | Impôts sur le revenu et le patrimoine | 68.399 | 70.390 | 2.91 | 1.99 |
B2_S14A | Revenu mixte | 32.422 | 33.096 | 2.08 | 0.67 |
€ change
Code
%>%
t_men_val filter(date %in% c(max(date), max(date)-years(1))) %>%
left_join(variable, by = "variable") %>%
spread(date, value) %>%
mutate(`% change` = round(100*(.[[4]]/.[[3]]-1), 2),
`change (Mds€)` = round(.[[4]]-.[[3]], 2)) %>%
arrange(-`change (Mds€)`) %>%
print_table_conditional(.)
variable | Variable | 2023-04-01 | 2024-04-01 | % change | change (Mds€) |
---|---|---|---|---|---|
B7 | Revenu disponible brut ajusté | 565.765 | 592.035 | 4.64 | 26.27 |
B2 + D11 + D4 + D62 + D7 | Total des ressources | 549.993 | 575.654 | 4.67 | 25.66 |
B6 | Revenu disponible brut | 441.093 | 462.610 | 4.88 | 21.52 |
D11 | Salaires et traitements bruts | 272.631 | 281.472 | 3.24 | 8.84 |
D62 | Prestations sociales en espèces | 147.717 | 156.420 | 5.89 | 8.70 |
B2_S14 | Excédent brut d'exploitation (y compris revenu mixte) | 99.855 | 104.675 | 4.83 | 4.82 |
D63 | Transferts sociaux en nature | 124.672 | 129.425 | 3.81 | 4.75 |
B2_S14B | Excédent brut d'exploitation des ménages purs | 67.433 | 71.579 | 6.15 | 4.15 |
D5 + D613 + D614 + D61SC | NA | 108.900 | 113.044 | 3.81 | 4.14 |
D4 | Intérêts et dividendes nets reçus | 33.763 | 37.263 | 10.37 | 3.50 |
D613 + D614 + D61SC | NA | 40.501 | 42.654 | 5.32 | 2.15 |
D5 | Impôts sur le revenu et le patrimoine | 68.399 | 70.390 | 2.91 | 1.99 |
B2_S14A | Revenu mixte | 32.422 | 33.096 | 2.08 | 0.67 |
D7 | Autres ressources nettes | -3.973 | -4.176 | 5.11 | -0.20 |
Evolution RDB, RDB sans capital
1990-
Code
%>%
t_men_val filter(variable %in% c("B6", "B2_S14B", "D4")) %>%
spread(variable, value) %>%
transmute(date, RDB = B6, `RDB - intérêts et dividendes` = B6-D4, `RDB - intérêts et dividendes - EBE` = B6-D4-B2_S14B) %>%
gather(Variable, value, -date) %>%
group_by(Variable) %>%
arrange(date) %>%
mutate(ga = value/lag(value, 4) - 1) %>%
filter(date >= as.Date("1990-01-01")) %>%
+ geom_line(aes(x = date, y = ga, color = Variable)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = seq.Date(from = as.Date("1900-01-01"), to = as.Date("2100-10-01"), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank(),
legend.direction = "vertical")
D11, B6
Montant
All
Linear
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1,2,5,8,10,20, 50, 80, 100, 200, 500, 1000, 1200, 2000, 3000, 5000, 10000),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
1995-
Linear
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
1999-
Linear
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1999-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Values
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1999-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Base 100
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Base 100 = 1999") +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2008-
Linear
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2008-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(2008, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2008-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(2008, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2017-
Linear
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(2008, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("D11", "B6")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(2008, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Revenus du capital
Montant
All
Linear
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1,2,5,8,10,20, 50, 80, 100, 200, 500, 1000, 1200, 2000, 3000, 5000, 10000),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
1995-
Linear
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2008-
Linear
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2008-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2008-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
2017-
Linear
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
t_men_val filter(variable %in% c("B2_S14", "B2_S14B", "D4")) %>%
left_join(variable, by = "variable") %>%
filter(date >= as.Date("2017-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 10),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())