7.401 – Compte des ménages (S14) (En milliards d’euros)
Data - INSEE
Info
Données sur le pouvoir d’achat
source | dataset | .html | .RData |
---|---|---|---|
insee | CNA-2014-RDB | 2025-01-07 | 2025-01-05 |
insee | CNT-2014-CSI | 2025-01-07 | 2025-01-05 |
insee | conso-eff-fonction | 2025-01-07 | 2022-06-14 |
insee | econ-gen-revenu-dispo-pouv-achat-2 | 2025-01-07 | 2024-07-05 |
insee | reve-conso-evo-dep-pa | 2025-01-07 | 2024-12-11 |
insee | reve-niv-vie-individu-activite | 2025-01-07 | NA |
insee | reve-niv-vie-pouv-achat-trim | 2025-01-07 | 2024-12-11 |
insee | T_7401 | 2025-01-05 | 2024-10-18 |
insee | t_men_val | 2025-01-05 | 2024-12-21 |
insee | t_pouvachat_val | 2025-01-05 | 2024-12-21 |
insee | t_recapAgent_val | 2025-01-05 | 2024-12-21 |
insee | t_salaire_val | 2025-01-05 | 2024-12-21 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
Bibliographie
Français
“Mesurer « le » pouvoir d’achat”, F. Geerolf, Document de travail, Juillet 2024. [html] [pdf]
“Inflation en France : IPC ou IPCH ?”, F. Geerolf, Document de travail, Juillet 2024. [html] [pdf]
“La taxe inflationniste, le pouvoir d’achat, le taux d’épargne et le déficit public”, F. Geerolf, Document de travail, Juillet 2024. [html] [pdf]
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-07 |
Last
Code
%>%
T_7401 group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()
year | Nobs |
---|---|
2023 | 101 |
Exemple
Début
Code
ig_b("insee", "t_7401_1")
Milieu
Code
ig_b("insee", "t_7401_2")
Fin
Code
ig_b("insee", "t_7401_3")
All
Code
ig_b("insee", "T_7401_bind")
Sources
7.401 – Compte des ménages (S14) (En milliards d’euros):
Données reliées
- 2.101 – Revenu disponible brut des ménages et évolution du pouvoir d’achat par personne, par ménage et par unité de consommation (En milliards d’euros et %) - T_2101. html
- 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104. html
- 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104_2018. html
- 7.401 – Compte des ménages (S14) (En milliards d’euros) - T_7401. html
- Comptes des secteurs institutionnels - CNA-2014-CSI. html
Concepts
Revenu primaire au RDB des ménages
2021
Code
ig_b("insee", "FPORSOC22", "F29", "table2")
2020
Code
ig_b("insee", "FPS2021", "revenu-primaire-RDB")
Composition du RDB des ménages
Code
ig_b("insee", "FPS2021", "EC4", "tab1")
line, Line
Code
%>%
T_7401 group_by(line, variable, Variable) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
gdp
Code
%>%
gdp print_table_conditional()
Table in 2000, 2005, 2010, 2015, 2020, 2023
Milliards
Code
%>%
T_7401 filter(year %in% c(paste0(seq(1980, 2100, 20)), 2023)) %>%
spread(year, value) %>%
arrange(line) %>%
mutate_at(vars(-line, -variable, -Variable), funs(round(.))) %>%
print_table_conditional()
%
Code
%>%
T_7401 left_join(gdp, by = "year") %>%
mutate(value_gdp = round(100 * value / gdp, 1)) %>%
filter(year %in% c(paste0(seq(1980, 2100, 20)), 2023)) %>%
select(-value, -gdp) %>%
spread(year, value_gdp) %>%
arrange(line) %>%
print_table_conditional()
D5 (line 52), D4 (line 30), B3g (line 22)
Tous
Code
%>%
T_7401 filter(line %in% c(52, 30, 22)) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.6, 0.9),
legend.title = element_blank())
1995-
Code
%>%
T_7401 filter(line %in% c(52, 30, 22)) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Revenu Disponible Brut (RDB), Ajusté (RDBA)
Code
%>%
T_7401 filter(variable %in% c("B6G", "B7G")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.15),
legend.title = element_blank())
Revenu Disponible brut, Solde des revenus primaires bruts
Code
%>%
T_7401 filter(variable %in% c("B6G", "B5G", "B7G")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.15),
legend.title = element_blank())
Consommation finale effective, Dépense de consommation individuelle
Code
%>%
T_7401 filter(variable %in% c("P31", "P4")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.6),
legend.title = element_blank())
Dividendes
% du PIB
Code
%>%
T_7401 filter(variable %in% c("D42")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp)) +
ggplot theme_minimal() + xlab("") + ylab("Revenus Distributés des Sociétés - Dividendes (% du PIB)") +
scale_x_date(breaks =seq.Date(from = as.Date("1947-01-01"), to = Sys.Date(), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, .1),
labels = percent_format(accuracy = .1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
Milliards
Linéaire
Code
%>%
T_7401 filter(variable %in% c("D42")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value)) +
ggplot theme_minimal() + xlab("") + ylab("Revenus Distributés des Sociétés - Dividendes (Milliards)") +
scale_x_date(breaks =seq.Date(from = as.Date("1947-01-01"), to = Sys.Date(), by = "5 years"),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-10, 100, 10)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
Log
Code
%>%
T_7401 filter(variable %in% c("D42")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value)) +
ggplot theme_minimal() + xlab("") + ylab("Revenus Distributés des Sociétés - Dividendes (Milliards)") +
scale_x_date(breaks =seq.Date(from = as.Date("1947-01-01"), to = Sys.Date(), by = "5 years"),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(c(1, 2, 3, 5, 8), seq(-10, 100, 10))) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
Revenus de la propriété
All
Code
%>%
T_7401 filter(variable %in% c("D4", "D42", "D44"),
%in% c(30, 32, 35)) %>%
line left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks ="5 years",
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
1995-
Code
%>%
T_7401 filter(variable %in% c("D4", "D42", "D44"),
%in% c(30, 32, 35)) %>%
line left_join(gdp, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
Salaires, Rémunération des salariés
Montant
All
Linear
Code
%>%
T_7401 filter(line %in% c(18, 26, 42)) %>%
bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 100),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
T_7401 filter(line %in% c(18, 26, 42)) %>%
bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(1,2,5,8,10,20, 50, 80, 100, 200, 500, 1000, 1200, 2000, 3000, 5000, 10000),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
1995-
Linear
Code
%>%
T_7401 filter(line %in% c(18, 26, 42)) %>%
bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 100),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
Log
Code
%>%
T_7401 filter(line %in% c(18, 26)) %>%
bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Milliards d'€") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1500, 100),
labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank())
% du PIB
All
Code
%>%
T_7401 filter(variable %in% c("D1", "D11"),
%in% c(25, 26)) %>%
line bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
1995-
Code
%>%
T_7401 filter(variable %in% c("D1", "D11"),
%in% c(25, 26)) %>%
line bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.7),
legend.title = element_blank())
% du RDB
All
Code
%>%
T_7401 filter(variable %in% c("D1", "D11"),
%in% c(25, 26)) %>%
line bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(rdb2, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / rdb, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du RDB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())
1995-
Code
%>%
T_7401 filter(variable %in% c("D1", "D11"),
%in% c(25, 26)) %>%
line bind_rows(T_2101 %>%
filter(line == 3) %>%
mutate(Variable = "Salaires et traitements nets")) %>%
left_join(rdb2, by = "year") %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
+ geom_line(aes(x = date, y = value / rdb, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.7),
legend.title = element_blank())
Dépense de consommation individuelle, revenu disponible brut
Dépense de consommation, RDB
Code
%>%
T_7401 filter(variable %in% c("B6G", "P31")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank())
Avec 0
Code
%>%
T_7401 filter(variable %in% c("B6G", "P31")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
labels = percent_format(accuracy = 1),
limits = c(0, 0.72)) +
theme(legend.position = c(0.7, 0.3),
legend.title = element_blank())