7.401 – Compte des ménages (S14) (En milliards d’euros)

Data - INSEE

Info

source dataset .html .RData

insee

T_7401

NA 2024-10-18

Données sur le pouvoir d’achat

source dataset .html .RData

insee

CNA-2014-RDB

2024-10-09 2024-10-08

insee

CNT-2014-CSI

2024-10-15 2024-10-15

insee

conso-eff-fonction

2024-10-09 2022-06-14

insee

econ-gen-revenu-dispo-pouv-achat-2

2024-10-09 2024-07-05

insee

reve-conso-evo-dep-pa

2024-10-09 2024-09-05

insee

reve-niv-vie-individu-activite

2024-10-09 NA

insee

reve-niv-vie-pouv-achat-trim

2024-10-09 2024-09-05

insee

t_7401

NA 2024-10-18

insee

t_men_val

2024-10-09 2024-09-02

insee

t_pouvachat_val

2024-10-09 2024-09-04

insee

t_recapAgent_val

2024-10-09 2024-09-02

insee

t_salaire_val

2024-10-09 2024-09-02

oecd

HH_DASH

2024-09-15 2023-09-09

Bibliographie

Français

  • “Mesurer”le” pouvoir d’achat”, F. Geerolf, Document de travail, Juillet 2024. [pdf]

  • “Inflation en France: IPC ou IPCH ?”, F. Geerolf, Document de travail, Juillet 2024. [pdf]

  • “La taxe inflationniste, le pouvoir d’achat, le taux d’épargne et le déficit public”, F. Geerolf, Document de travail, Juillet 2024. [pdf]

LAST_COMPILE

LAST_COMPILE
2024-10-18

Last

Code
T_7401 %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(year)) %>%
  head(1) %>%
  print_table_conditional()
year Nobs
2023 101

Exemple

Début

Code
ig_b("insee", "T_7401_1")

Milieu

Code
ig_b("insee", "T_7401_2")

Fin

Code
ig_b("insee", "T_7401_3")

All

Code
ig_b("insee", "T_7401_bind")

Sources

7.401 – Compte des ménages (S14) (En milliards d’euros):

  • Comptes de la Nation 2022. html / xlsx

  • Comptes de la Nation 2020. html / xlsx

  • Comptes de la Nation 2019. html

Données reliées

  • 2.101 – Revenu disponible brut des ménages et évolution du pouvoir d’achat par personne, par ménage et par unité de consommation (En milliards d’euros et %) - t_2101. html
  • 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104. html
  • 2.104 – Compte des ménages simplifié et ratios d’épargne (En milliards d’euros et %) - t_2104_2018. html
  • 7.401 – Compte des ménages (S14) (En milliards d’euros) - T_7401. html
  • Comptes des secteurs institutionnels - CNA-2014-CSI. html

Concepts

Revenu primaire au RDB des ménages

2021

Code
ig_b("insee", "FPORSOC22", "F29", "table2")

2020

Code
ig_b("insee", "FPS2021", "revenu-primaire-RDB")

Composition du RDB des ménages

Code
ig_b("insee", "FPS2021", "EC4", "tab1")

Prestations de protection sociale en 2018

Code
ig_b("insee", "TEF2020", "057", "prestations-sociales")

line, Line

Code
T_7401 %>%
  group_by(line, variable, Variable) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

gdp

Code
gdp %>%
  print_table_conditional()

Table in 2000, 2005, 2010, 2015, 2020

Milliards

Code
T_7401 %>%
  filter(year %in% paste0(seq(1980, 2100, 20))) %>%
  spread(year, value) %>%
  arrange(line) %>%
  mutate_at(vars(-line, -variable, -Variable), funs(round(.))) %>%
  print_table_conditional()

%

Code
T_7401 %>%
  left_join(gdp, by = "year") %>%
  mutate(value_gdp = round(100 * value / gdp, 1)) %>%
  filter(year %in% paste0(seq(2000, 2100, 10))) %>%
  select(-value, -gdp) %>%
  spread(year, value_gdp) %>%
  arrange(line) %>%
  print_table_conditional()

D5 (line 52), D4 (line 30), B3g (line 22)

Tous

Code
T_7401 %>%
  filter(line %in% c(52, 30, 22)) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.6, 0.9),
        legend.title = element_blank())

1995-

Code
T_7401 %>%
  filter(line %in% c(52, 30, 22)) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

Revenu Disponible brut, Solde des revenus primaires bruts

Code
T_7401 %>%
  filter(variable %in% c("B6G", "B5G", "B7G")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.15),
        legend.title = element_blank())

Consommation finale effective, Dépense de consommation individuelle

Code
T_7401 %>%
  filter(variable %in% c("P31", "P4")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.7, 0.6),
        legend.title = element_blank())

Dividendes

All

Code
T_7401 %>%
  filter(variable %in% c("D42")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp)) +
  theme_minimal() + xlab("") + ylab("Revenus Distributés des Sociétés - Dividendes (% du PIB)") +
  scale_x_date(breaks =seq.Date(from = as.Date("1947-01-01"), to = Sys.Date(), by = "5 years"),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, .1),
                     labels = percent_format(accuracy = .1)) +
  theme(legend.position = c(0.2, 0.9),
        legend.title = element_blank())

Revenus de la propriété

All

Code
T_7401 %>%
  filter(variable %in% c("D4", "D42", "D44"),
         line %in% c(30, 32, 35)) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks ="5 years",
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.9),
        legend.title = element_blank())

1995-

Code
T_7401 %>%
  filter(variable %in% c("D4", "D42", "D44"),
         line %in% c(30, 32, 35)) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank())

Salaires, Rémunération des salariés

Montant

All

Linear

Code
T_7401 %>%
  filter(line %in% c(18, 26, 42)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
  theme_minimal() + xlab("") + ylab("Milliards d'€") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 10000, 100),
                     labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

Log

Code
T_7401 %>%
  filter(line %in% c(18, 26, 42)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
  theme_minimal() + xlab("") + ylab("Milliards d'€") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_log10(breaks = c(1,2,5,8,10,20, 50, 80, 100, 200, 500, 1000, 1200, 2000, 3000, 5000, 10000),
                     labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

1995-

Linear

Code
T_7401 %>%
  filter(line %in% c(18, 26, 42)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
  theme_minimal() + xlab("") + ylab("Milliards d'€") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 10000, 100),
                     labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

Log

Code
T_7401 %>%
  filter(line %in% c(18, 26, 42)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value, color = Variable)) +
  theme_minimal() + xlab("") + ylab("Milliards d'€") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(0, 1500, 100),
                     labels = dollar_format(accuracy = 1, pre = "", su ="Mds€")) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

% du PIB

All

Code
T_7401 %>%
  filter(variable %in% c("D1", "D11"),
         line %in% c(25, 26)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.9),
        legend.title = element_blank())

1995-

Code
T_7401 %>%
  filter(variable %in% c("D1", "D11"),
         line %in% c(25, 26)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.7),
        legend.title = element_blank())

% du RDB

All

Code
T_7401 %>%
  filter(variable %in% c("D1", "D11"),
         line %in% c(25, 26)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(rdb2, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / rdb, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du RDB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.9),
        legend.title = element_blank())

1995-

Code
T_7401 %>%
  filter(variable %in% c("D1", "D11"),
         line %in% c(25, 26)) %>%
  bind_rows(t_2101 %>%
              filter(line == 3) %>%
              mutate(Variable = "Salaires et traitements nets")) %>%
  left_join(rdb2, by = "year") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1995-01-01")) %>%
  ggplot + geom_line(aes(x = date, y = value / rdb, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.2, 0.7),
        legend.title = element_blank())

Dépense de consommation individuelle, revenu disponible brut

Dépense de consommation, RDB

Code
T_7401 %>%
  filter(variable %in% c("B6G", "P31")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 2),
                     labels = percent_format(accuracy = 1)) +
  
  theme(legend.position = c(0.7, 0.9),
        legend.title = element_blank())

Avec 0

Code
T_7401 %>%
  filter(variable %in% c("B6G", "P31")) %>%
  left_join(gdp, by = "year") %>%
  year_to_date2 %>%
  ggplot + geom_line(aes(x = date, y = value / gdp, color = Variable)) +
  theme_minimal() + xlab("") + ylab("% du PIB") +
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-10, 100, 5),
                     labels = percent_format(accuracy = 1),
                     limits = c(0, 0.72)) +
  
  theme(legend.position = c(0.7, 0.3),
        legend.title = element_blank())