Wage
Data - Fred
Info
Data on wages
source | dataset | .html | .RData |
---|---|---|---|
eurostat | earn_mw_cur | 2024-11-08 | 2024-10-08 |
eurostat | ei_lmlc_q | 2024-11-08 | 2024-10-08 |
eurostat | lc_lci_lev | 2024-11-08 | 2024-10-08 |
eurostat | lc_lci_r2_q | 2024-11-08 | 2024-11-04 |
eurostat | nama_10_lp_ulc | 2024-11-08 | 2024-10-08 |
eurostat | namq_10_lp_ulc | 2024-11-05 | 2024-11-04 |
eurostat | tps00155 | 2024-11-05 | 2024-10-08 |
fred | wage | 2024-11-09 | 2024-11-21 |
ilo | EAR_4MTH_SEX_ECO_CUR_NB_A | 2024-06-20 | 2023-06-01 |
ilo | EAR_XEES_SEX_ECO_NB_Q | 2024-06-20 | 2023-06-01 |
oecd | AV_AN_WAGE | 2024-04-16 | 2024-10-24 |
oecd | AWCOMP | 2024-09-15 | 2023-09-09 |
oecd | EAR_MEI | 2024-04-16 | 2024-04-16 |
oecd | HH_DASH | 2024-09-15 | 2023-09-09 |
oecd | MIN2AVE | 2024-09-15 | 2023-09-09 |
oecd | RMW | 2024-09-15 | 2024-03-12 |
oecd | ULC_EEQ | 2024-09-15 | 2024-04-15 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-21 |
Last
date | Nobs |
---|---|
2024-10-01 | 5 |
variable
Code
%>%
wage left_join(variable, by = "variable") %>%
group_by(variable, Variable) %>%
arrange(date) %>%
summarise(Nobs = n(),
first = first(date),
last = last(date)) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Employment Cost Index (Wages)
ECIWAG, ECICONWAG, CPIAUCSL
All
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("ECIWAG", "ECICONWAG", "CPIAUCSL")) %>%
filter(month(date) %in% c(1, 4, 7, 10),
!is.na(value)) %>%
select(date, variable, value) %>%
group_by(variable) %>%
filter(date >= as.Date("2001-01-01")) %>%
arrange(date) %>%
mutate(value_d1 = value/lag(value, 4) - 1) %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value_d1, color = variable)) + theme_minimal() +
scale_x_date(breaks = "12 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2010-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("ECIWAG", "ECICONWAG", "CPIAUCSL")) %>%
filter(month(date) %in% c(1, 4, 7, 10),
!is.na(value)) %>%
select(date, variable, value) %>%
group_by(variable) %>%
filter(date >= as.Date("2010-01-01")) %>%
arrange(date) %>%
mutate(value_d1 = value/lag(value, 4) - 1) %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value_d1, color = variable)) + theme_minimal() +
scale_x_date(breaks = "12 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2017-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("ECIWAG", "ECICONWAG", "CPIAUCSL")) %>%
filter(month(date) %in% c(1, 4, 7, 10),
!is.na(value)) %>%
select(date, variable, value) %>%
group_by(variable) %>%
filter(date >= as.Date("2017-01-01")) %>%
arrange(date) %>%
mutate(value_d1 = value/lag(value, 4) - 1) %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value_d1, color = variable)) + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
ECIWAG, ECICONWAG
All
Code
%>%
wage filter(variable %in% c("ECIWAG", "ECICONWAG")) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 4) - 1) %>%
left_join(variable, by = "variable") %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value, color = Variable)) + theme_minimal() +
scale_x_date(breaks = "12 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2010-
Code
%>%
wage filter(variable %in% c("ECIWAG", "ECICONWAG")) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 4) - 1) %>%
filter(date >= as.Date("2010-01-01")) %>%
left_join(variable, by = "variable") %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value, color = Variable)) + theme_minimal() +
scale_x_date(breaks = "12 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2019-
Code
%>%
wage filter(variable %in% c("ECIWAG", "ECICONWAG")) %>%
select(date, variable, value) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = value/lag(value, 4) - 1) %>%
filter(date >= as.Date("2019-01-01")) %>%
left_join(variable, by = "variable") %>%
%>%
na.omit ggplot(.) + geom_line(aes(x = date, y = value, color = Variable)) + theme_minimal() +
scale_x_date(breaks = "3 months",
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 0.5),
labels = scales::percent_format(accuracy = .1)) +
xlab("") + ylab("ECI Inflation (%)") +
theme(legend.position = c(0.4, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Real Average Hourly Earnings of All Employees, Total Private - CES3000000008
Index
All
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
%>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[date == as.Date("1972-01-01")]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 5)) +
scale_x_date(breaks = as.Date(paste0(seq(1942, 2024, 5), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
1970-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("1970-01-01")) %>%
%>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 5), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
Round Stagflation: 1960-1980
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("1960-01-01"),
<= as.Date("1980-01-01")) %>%
date %>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
1972-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("1972-01-01")) %>%
%>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1972, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
1995-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("1995-01-01")) %>%
%>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 5), "-01-01")),
labels = date_format("%Y"))
2002-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES3000000008")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("2002-01-01")) %>%
%>%
unique spread(variable, value) %>%
mutate(CES3000000008_real = CES3000000008/CPIAUCSL) %>%
filter(!is.na(CES3000000008_real)) %>%
mutate(CES3000000008_real = 100*CES3000000008_real/CES3000000008_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES3000000008_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 2), "-01-01")),
labels = date_format("%Y"))
Log
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES0500000003")) %>%
filter(month(date) == 1) %>%
select(date, variable, value) %>%
spread(variable, value) %>%
mutate(CES0500000003_real = CES0500000003/CPIAUCSL) %>%
filter(!is.na(CES0500000003_real)) %>%
mutate(wage_inflation = CES0500000003_real/lag(CES0500000003_real)-1) %>%
ggplot(.) + ylab("Real Wage Inflation") + xlab("") +
geom_line(aes(x = date, y = wage_inflation)) +
scale_y_continuous(breaks = seq(-0.2, 0.4, 0.01),
labels = percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme_minimal()
Real Average
Index
All
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES0500000003")) %>%
select(date, variable, value) %>%
%>%
unique spread(variable, value) %>%
%>%
na.omit mutate(CES0500000003_real = CES0500000003/CPIAUCSL) %>%
filter(!is.na(CES0500000003_real)) %>%
mutate(CES0500000003_real = 100*CES0500000003_real/CES0500000003_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES0500000003_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1942, 2024, 2), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
1970-
Code
%>%
wage bind_rows(cpi) %>%
filter(variable %in% c("CPIAUCSL", "CES0500000003")) %>%
select(date, variable, value) %>%
filter(date >= as.Date("1970-01-01")) %>%
%>%
unique spread(variable, value) %>%
mutate(CES0500000003_real = CES0500000003/CPIAUCSL) %>%
filter(!is.na(CES0500000003_real)) %>%
mutate(CES0500000003_real = 100*CES0500000003_real/CES0500000003_real[1]) %>%
ggplot(.) + geom_line(aes(x = date, y = CES0500000003_real)) +
ylab("Real Wages") + xlab("") + theme_minimal() +
scale_y_log10(breaks = seq(0, 200, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 5), "-01-01")),
labels = date_format("%Y")) +
geom_hline(yintercept = 100, linetype = "dashed", color = "red")
Average Hourly Earnings of All Employees, Total Private - CES0500000003
Index
Code
%>%
wage filter(variable == "CES0500000003") %>%
ggplot(.) + geom_line(aes(x = date, y = value)) +
ylab("Wages") + xlab("") + theme_minimal() +
scale_y_continuous(breaks = seq(0, 30, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2024, 2), "-01-01")),
labels = date_format("%Y"))
Log
Code
%>%
wage filter(variable == "CES0500000003") %>%
mutate(year = year(date),
month = month(date)) %>%
filter(month == 1) %>%
mutate(value_log = log(value),
wage_inflation = value_log - lag(value_log)) %>%
ggplot(.) + ylab("Wage Inflation") + xlab("") +
geom_line(aes(x = date, y = wage_inflation)) +
scale_y_continuous(breaks = seq(-0.2, 0.4, 0.01),
labels = percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme_minimal()
CPIAUCSL
Index
Code
%>%
cpi filter(variable == "CPIAUCSL") %>%
ggplot(.) + geom_line(aes(x = date, y = value)) +
ylab("Wages") + xlab("") + theme_minimal() +
scale_y_continuous(breaks = seq(0, 30, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2024, 2), "-01-01")),
labels = date_format("%Y"))
Log
Code
%>%
cpi filter(variable == "CPIAUCSL") %>%
mutate(year = year(date),
month = month(date)) %>%
filter(month == 1) %>%
mutate(value_log = log(value),
wage_inflation = value_log - lag(value_log)) %>%
filter(date >= as.Date("2008-01-01")) %>%
ggplot(.) + ylab("Price Inflation") + xlab("") +
geom_line(aes(x = date, y = wage_inflation)) +
scale_y_continuous(breaks = seq(-0.2, 0.4, 0.01),
labels = percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2022, 2), "-01-01")),
labels = date_format("%Y")) +
theme_minimal()
U.S. Index of Manufacturing Wage Rates (07/1922 - 07/1935)
Index
(ref:us-index-CES3000000008) U.S. Index of Manufacturing Wage Rates (07/1922 - 07/1935)
Code
%>%
wage filter(variable == "CES3000000008") %>%
ggplot(.) +
geom_line(aes(x = date, y = value)) +
ylab("Wages") + xlab("") +
scale_y_continuous(breaks = seq(0, 30, 2)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme_minimal()
Log
(ref:us-index-CES3000000008-d1ln) U.S. Index of Manufacturing Wage Rates (07/1922 - 07/1935)
Code
%>%
wage filter(variable == "CES3000000008") %>%
mutate(year = year(date),
month = month(date)) %>%
filter(month == 1) %>%
mutate(value_log = log(value),
wage_inflation = value_log - lag(value_log)) %>%
ggplot(.) + ylab("Wage Inflation") + xlab("") +
geom_line(aes(x = date, y = wage_inflation)) +
scale_y_continuous(breaks = seq(-0.2, 0.4, 0.02),
labels = percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2020, 5), "-01-01")),
labels = date_format("%Y")) +
theme_minimal()
Index of Manufacturing Wages (M0872BUSM234NNBR)
1928-1935
October 29, 1929 (“Black Tuesday”)
Code
%>%
wage filter(variable == "M0872BUSM234NNBR",
>= as.Date("1928-01-01")) %>%
date ggplot(.) +
geom_line(aes(x = date, y = value)) +
ylab("Wages") + xlab("") +
geom_rect(data = nber_recessions,
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = viridis(3)[3], alpha = 0.1) +
scale_y_continuous(breaks = seq(90, 110, 2.5),
limits = c(92.5, 110)) +
scale_x_date(breaks = as.Date(paste0(seq(1928, 1935, 1), "-01-01")),
labels = date_format("%Y"),
limits = c(as.Date("1928-01-01"), as.Date("1935-07-01"))) +
theme_minimal() +
geom_vline(xintercept = as.Date("1929-10-29"), linetype = "dashed", color = viridis(3)[1]) +
geom_vline(xintercept = as.Date("1933-04-01"), linetype = "dashed", color = viridis(3)[2])
2022-1935
October 29, 1929 (“Black Tuesday”)
(ref:us-index-manuf-wage) U.S. Index of Manufacturing Wage Rates (07/1922 - 07/1935)
Code
%>%
wage filter(variable == "M0872BUSM234NNBR") %>%
ggplot(.) +
geom_line(aes(x = date, y = value)) +
ylab("Wages") + xlab("") +
geom_rect(data = nber_recessions,
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_y_continuous(breaks = seq(90, 110, 2.5),
limits = c(92.5, 110)) +
scale_x_date(breaks = as.Date(paste0(seq(1922, 1935, 1), "-01-01")),
labels = date_format("%Y"),
limits = c(as.Date("1922-01-01"), as.Date("1935-07-01"))) +
theme_minimal() +
geom_vline(xintercept = as.Date("1929-10-29"), linetype = "dashed", color = viridis(3)[1]) +
geom_vline(xintercept = as.Date("1933-04-01"), linetype = "dashed", color = viridis(3)[2])