wages %>%
arrange(-(dataset == "AV_AN_WAGE")) %>%
mutate(Title = read_lines(paste0("~/Dropbox/website/data/", source, "/",dataset, ".Rmd"), skip = 1, n_max = 1) %>% gsub("title: ", "", .) %>% gsub("\"", "", .)) %>%
mutate(Download = as.Date(file.info(paste0("~/Dropbox/website/data/", source, "/", dataset, ".RData"))$mtime),
Compile = as.Date(file.info(paste0("~/Dropbox/website/data/", source, "/", dataset, ".html"))$mtime)) %>%
mutate(Compile = paste0("[", Compile, "](https://fgeerolf.com/data/", source, "/", dataset, '.html)')) %>%
print_table_conditional()
source | dataset | Title | Download | Compile |
---|---|---|---|---|
oecd | AV_AN_WAGE | Average annual wages | 2023-09-09 | 2024-04-15 |
eurostat | earn_mw_cur | Monthly minimum wages - bi-annual data | 2024-04-09 | 2024-04-15 |
eurostat | ei_lmlc_q | Labour cost index, nominal value - quarterly data | 2024-04-15 | 2024-04-15 |
eurostat | lc_lci_lev | Labour cost levels by NACE Rev. 2 activity | 2024-04-09 | 2024-04-15 |
eurostat | lc_lci_r2_q | Labour cost index by NACE Rev. 2 activity - nominal value, quarterly data | 2024-04-09 | 2024-04-15 |
eurostat | nama_10_lp_ulc | Labour productivity and unit labour costs | 2024-04-15 | 2024-04-15 |
eurostat | namq_10_lp_ulc | Labour productivity and unit labour costs | 2024-04-09 | 2024-04-15 |
eurostat | tps00155 | Minimum wages | 2024-04-09 | 2024-04-15 |
fred | wage | Wage | 2024-04-15 | 2024-04-15 |
ilo | EAR_4MTH_SEX_ECO_CUR_NB_A | Mean nominal monthly earnings of employees by sex and economic activity – Harmonized series | 2023-06-01 | 2023-06-01 |
ilo | EAR_XEES_SEX_ECO_NB_Q | Mean nominal monthly earnings of employees by sex and economic activity – Harmonized series | 2023-06-01 | 2023-06-01 |
oecd | AWCOMP | Taxing Wages - Comparative tables | 2023-09-09 | 2024-04-15 |
oecd | EAR_MEI | Hourly Earnings (MEI) | 2024-04-08 | 2024-04-15 |
oecd | HH_DASH | Household Dashboard | 2023-09-09 | 2024-04-15 |
oecd | MIN2AVE | Minimum relative to average wages of full-time workers - MIN2AVE | 2023-09-09 | 2024-04-15 |
oecd | RMW | Real Minimum Wages - RMW | 2024-03-12 | 2024-04-15 |
oecd | ULC_EEQ | Unit labour costs and labour productivity (employment based), Total economy | 2024-04-15 | 2024-04-15 |
LAST_COMPILE |
---|
2024-04-16 |
obsTime | Nobs |
---|---|
2022 | 103 |
This dataset contains data on average annual wages per full-time and full-year equivalent employee in the total economy. Average annual wages per full-time equivalent dependent employee are obtained by dividing the national-accounts-based total wage bill by the average number of employees in the total economy, which is then multiplied by the ratio of average usual weekly hours per full-time employee to average usually weekly hours for all employees. For more details, see: http://www.oecd.org/els/oecd-employment-outlook-19991266.htm and http://www.oecd.org/employment/emp/onlineoecdemploymentdatabase.htm.
AV_AN_WAGE %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
group_by(SERIES, Series) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()
SERIES | Series | nobs |
---|---|---|
USDPPP | In 2021 constant prices at 2021 USD PPPs | 1173 |
CNPNCU | 2021 constant prices and NCU | 1141 |
CPNCU | Current prices in NCU | 1141 |
AV_AN_WAGE %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(SERIES == "CNPNCU",
COUNTRY %in% c("FRA", "DEU", "ITA", "ESP", "USA")) %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Country) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_5flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10)) +
ylab(" 2020 constant prices and NCU (1996 = 100)") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CPNCU") %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(SERIES == "CPNCU",
COUNTRY %in% c("FRA", "DEU", "ITA")) %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
year_to_date() %>%
mutate(obsValue = obsValue / 1000) %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = " k", prefix = "")) +
ylab("Current prices in NCU") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CPNCU",
COUNTRY %in% c("FRA", "DEU", "ITA", "ESP", "USA")) %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Country) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_5flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10)) +
ylab("Current prices in NCU") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CPNCU",
COUNTRY %in% c("AUS", "MEX", "CHE")) %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
year_to_date() %>%
mutate(obsValue = obsValue / 1000) %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = " k", prefix = "")) +
ylab("Current prices in NCU") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CPNCU",
COUNTRY %in% c("AUS", "MEX", "CHE")) %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
year_to_date() %>%
filter(date >= as.Date("2008-01-01")) %>%
mutate(obsValue = obsValue / 1000) %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = " k", prefix = "")) +
ylab("Current prices in NCU") + xlab("")
AV_AN_WAGE %>%
filter(COUNTRY %in% c("FRA"),
SERIES != "USDPPP") %>%
select_if(~n_distinct(.) > 1) %>%
select(-REFERENCEPERIOD) %>%
group_by(obsTime) %>%
summarise(obsValue = obsValue[SERIES == "CPNCU"]/obsValue[SERIES == "CNPNCU"]) %>%
ungroup %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Price Index") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 5))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("FRA"),
SERIES != "USDPPP") %>%
select_if(~n_distinct(.) > 1) %>%
select(-REFERENCEPERIOD) %>%
group_by(obsTime) %>%
summarise(obsValue = obsValue[SERIES == "CPNCU"]/obsValue[SERIES == "CNPNCU"]) %>%
ungroup %>%
year_to_date %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
ggplot() + geom_line(aes(x = date, y = obsValue)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Price Index") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 5))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("DEU"),
SERIES != "USDPPP") %>%
select_if(~n_distinct(.) > 1) %>%
select(-REFERENCEPERIOD) %>%
group_by(obsTime) %>%
summarise(obsValue = obsValue[SERIES == "CPNCU"]/obsValue[SERIES == "CNPNCU"]) %>%
ungroup %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Price Index") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 5))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("USA"),
SERIES != "USDPPP") %>%
select_if(~n_distinct(.) > 1) %>%
select(-REFERENCEPERIOD) %>%
group_by(obsTime) %>%
summarise(obsValue = obsValue[SERIES == "CPNCU"]/obsValue[SERIES == "CNPNCU"]) %>%
ungroup %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Price Index") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 200, 5))
AV_AN_WAGE %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country, Series) %>%
summarise(Nobs = n()) %>%
spread(Series, Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(COUNTRY %in% c("AUS")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("CZE"),
SERIES != "USDPPP") %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 50),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("AUT")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("HUN"),
SERIES != "USDPPP") %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 10000, 500),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("JPN"),
SERIES != "USDPPP") %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 10000, 50),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("CHE")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("SVN")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("POL")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("ISR"),
SERIES != "USDPPP") %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 500, 10),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("FRA")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("FRA")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
group_by(Series) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage (100 = 1990)") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 300, 10))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("FRA")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Series) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage (100 = 1996)") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 300, 10))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("DEU")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
filter(year(date) >= 1990) %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("DEU")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
group_by(Series) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage (100 = 1990)") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 300, 10))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("DEU")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(Series) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
ggplot() + geom_line(aes(x = date, y = obsValue, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage (100 = 1996)") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 300, 10))
AV_AN_WAGE %>%
filter(COUNTRY %in% c("USA")) %>%
left_join(AV_AN_WAGE_var$SERIES, by = "SERIES") %>%
year_to_date %>%
filter(year(date) >= 1990) %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Series)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() + ylab("Average Wage") + xlab("") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 100, 5),
labels = dollar_format(accuracy = 1, suffix = "k", prefix = ""))
AV_AN_WAGE %>%
filter(SERIES == "CNPNCU") %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(Country) %>%
summarise(year1 = first(obsTime),
year2 = last(obsTime),
value1 = first(obsValue),
value2 = last(obsValue),
nobs = n()) %>%
mutate_at(vars(value1, value2), funs(round)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(SERIES == "USDPPP") %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(Country) %>%
summarise(year1 = first(obsTime),
year2 = last(obsTime),
value1 = first(obsValue),
value2 = last(obsValue),
nobs = n()) %>%
mutate_at(vars(value1, value2), funs(round)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(SERIES == "CPNCU") %>%
left_join(AV_AN_WAGE_var$COUNTRY, by = "COUNTRY") %>%
group_by(Country) %>%
summarise(year1 = first(obsTime),
year2 = last(obsTime),
value1 = first(obsValue),
value2 = last(obsValue),
nobs = n()) %>%
mutate_at(vars(value1, value2), funs(round)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
AV_AN_WAGE %>%
filter(SERIES == "USDPPP",
COUNTRY %in% c("FRA", "DEU")) %>%
left_join(AV_AN_WAGE_var[["COUNTRY"]], by = "COUNTRY") %>%
group_by(Country) %>%
select(Country, obsTime, obsValue) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue / 1000, color = Country)) +
geom_image(data = . %>%
filter(date == as.Date("2015-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue / 1000, image = image), asp = 1.5) +
scale_color_manual(values = c("#002395", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 100, 2),
labels = scales::dollar_format(accuracy = 1, suffix = " k")) +
ylab("2018 constant prices at 2018 USD PPPs") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CPNCU",
COUNTRY %in% c("FRA", "DEU")) %>%
left_join(AV_AN_WAGE_var[["COUNTRY"]], by = "COUNTRY") %>%
group_by(Country) %>%
select(Country, obsTime, obsValue) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Country)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
geom_image(data = . %>%
filter(date == as.Date("2015-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue / 1000, image = image), asp = 1.5) +
scale_color_manual(values = c("#002395", "#000000")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 100, 2),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = "")) +
ylab("Current prices in NCU") + xlab("")
AV_AN_WAGE %>%
filter(SERIES == "CNPNCU",
COUNTRY %in% c("FRA", "DEU")) %>%
left_join(AV_AN_WAGE_var[["COUNTRY"]], by = "COUNTRY") %>%
group_by(Country) %>%
select(Country, obsTime, obsValue) %>%
year_to_date %>%
ggplot() + geom_line(aes(x = date, y = obsValue/1000, color = Country)) +
geom_image(data = . %>%
filter(date == as.Date("2015-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Country), ".png")),
aes(x = date, y = obsValue / 1000, image = image), asp = 1.5) +
scale_color_manual(values = c("#002395", "#000000")) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 100, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = "")) +
ylab("2018 constant prices in NCU") + xlab("")