Mean nominal monthly earnings of employees by sex and economic activity – Harmonized series

Data - ILO

Info

Data on wages

Code
wages %>%
  mutate(Title = read_lines(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/",dataset, ".qmd"), skip = 1, n_max = 1) %>% gsub("title: ", "", .) %>% gsub("\"", "", .)) %>%
  mutate(Download = as.Date(file.info(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/", dataset, ".RData"))$mtime),
         Compile = as.Date(file.info(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/", dataset, ".html"))$mtime)) %>%
  mutate(Compile = paste0("[", Compile, "](https://fgeerolf.com/data/", source, "/", dataset, '.html)')) %>%
  print_table_conditional()
source dataset Title Download Compile
eurostat earn_mw_cur Monthly minimum wages - bi-annual data 2024-06-08 [2024-06-20]
eurostat ei_lmlc_q Labour cost index, nominal value - quarterly data 2024-06-08 [2024-06-20]
eurostat lc_lci_lev Labour cost levels by NACE Rev. 2 activity 2024-06-08 [2024-06-20]
eurostat lc_lci_r2_q Labour cost index by NACE Rev. 2 activity - nominal value, quarterly data 2024-06-08 [2024-06-18]
eurostat nama_10_lp_ulc Labour productivity and unit labour costs 2024-06-08 [2024-06-20]
eurostat namq_10_lp_ulc Labour productivity and unit labour costs 2024-06-08 [2024-06-20]
eurostat tps00155 Minimum wages 2024-06-08 [2024-06-20]
fred wage Wage 2024-06-07 [2024-06-20]
ilo EAR_4MTH_SEX_ECO_CUR_NB_A Mean nominal monthly earnings of employees by sex and economic activity -- Harmonized series 2023-06-01 [2024-06-20]
ilo EAR_XEES_SEX_ECO_NB_Q Mean nominal monthly earnings of employees by sex and economic activity -- Harmonized series 2023-06-01 [2024-06-20]
oecd AV_AN_WAGE Average annual wages 2023-09-09 [2024-04-16]
oecd AWCOMP Taxing Wages - Comparative tables 2023-09-09 [2024-06-19]
oecd EAR_MEI Hourly Earnings (MEI) 2024-04-16 [2024-04-16]
oecd HH_DASH Household Dashboard 2023-09-09 [2024-06-19]
oecd MIN2AVE Minimum relative to average wages of full-time workers - MIN2AVE 2023-09-09 [2024-06-19]
oecd RMW Real Minimum Wages - RMW 2024-03-12 [2024-06-19]
oecd ULC_EEQ Unit labour costs and labour productivity (employment based), Total economy 2024-04-15 [2024-06-20]

Données sur les salaires

Code
salaires %>%
  mutate(Title = read_lines(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/",dataset, ".qmd"), skip = 1, n_max = 1) %>% gsub("title: ", "", .) %>% gsub("\"", "", .)) %>%
  mutate(Download = as.Date(file.info(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/", dataset, ".RData"))$mtime),
         Compile = as.Date(file.info(paste0("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/", source, "/", dataset, ".html"))$mtime)) %>%
  mutate(Compile = paste0("[", Compile, "](https://fgeerolf.com/data/", source, "/", dataset, '.html)')) %>%
  print_table_conditional()
source dataset Title Download Compile
dares les-indices-de-salaire-de-base Les indices de salaire de base 2024-03-25 [2024-06-17]
insee CNA-2014-RDB Revenu et pouvoir d’achat des ménages 2024-06-18 [2024-06-20]
insee CNT-2014-CSI Comptes de secteurs institutionnels 2024-06-18 [2024-06-20]
insee ECRT2023 Emploi, chômage, revenus du travail - Edition 2023 2023-06-30 [2024-06-20]
insee INDICE-TRAITEMENT-FP Indice de traitement brut dans la fonction publique de l'État 2024-06-18 [2024-06-20]
insee SALAIRES-ACEMO Indices trimestriels de salaires dans le secteur privé - Résultats par secteur d’activité 2024-06-19 [2024-06-19]
insee SALAIRES-ACEMO-2017 Indices trimestriels de salaires dans le secteur privé 2024-06-19 [2024-06-20]
insee SALAIRES-ANNUELS Salaires annuels 2024-06-19 [2024-06-19]
insee if230 Séries longues sur les salaires dans le secteur privé 2021-12-04 [2024-06-20]
insee ir_salaires_SL_csv Séries longues sur les salaires dans le secteur privé - Base Tous salariés - Insee Résultats NA [2024-06-20]
insee t_7401 7.401 – Compte des ménages (S14) (En milliards d'euros) 2023-12-23 [2024-06-19]
insee t_salaire_val Salaire moyen par tête - SMPT (données CVS) 2024-03-04 [2024-06-19]

ref_area

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(ref_area, by = "ref_area") %>%
  group_by(ref_area, Ref_area) %>%
  summarise(Nobs = n()) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

indicator

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(indicator, by = "indicator") %>%
  group_by(indicator, Indicator) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional
indicator Indicator Nobs
EAR_4MTH_SEX_ECO_CUR_NB Mean nominal monthly earnings of employees by sex and economic activity -- Harmonized series 340750

sex

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(sex, by = "sex") %>%
  group_by(sex, Sex) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
sex Sex Nobs
SEX_T Sex: Total 135340
SEX_M Sex: Male 104335
SEX_F Sex: Female 101057
SEX_O Sex: Other 18

classif1

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(classif1, by = "classif1") %>%
  group_by(classif1, Classif1) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional

classif2

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(classif2, by = "classif2") %>%
  group_by(classif2, Classif2) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional
classif2 Classif2 Nobs
CUR_TYPE_LCU Currency: Local currency 129067
CUR_TYPE_PPP Currency: 2017 PPP $ 98895
CUR_TYPE_USD Currency: U.S. dollars 112788

source

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  left_join(source, by = "source") %>%
  group_by(source, Source) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

ECO_AGGREGATE_TOTAL, CUR_TYPE_LCU

Table

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  filter(classif1 == "ECO_AGGREGATE_TOTAL",
         sex == "SEX_T") %>%
  left_join(ref_area, by = "ref_area") %>%
  group_by(ref_area, Ref_area, classif2) %>%
  summarise(Nobs = n()) %>%
  spread(classif2, Nobs) %>%
  arrange(-CUR_TYPE_LCU) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

China

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  filter(classif1 == "ECO_AGGREGATE_TOTAL",
         sex == "SEX_T",
         ref_area == "CHN") %>%
  left_join(classif2, by = "classif2") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = obs_value, color = Classif2)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.3, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(1000, 2000, 3000, 5000, 8000, 10000, 20000, 30000, 50000),
                labels = dollar_format(suffix = "", prefix = "", accuracy = 1))

Individual Countries

Argentina

Table

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  filter(ref_area == "ARG",
         classif2 == "CUR_TYPE_LCU",
         sex == "SEX_T") %>%
  left_join(classif1, by = "classif1") %>%
  group_by(classif1, Classif1) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional

Essai

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  filter(ref_area == "ARG",
         classif1 %in% c("ECO_AGGREGATE_MAN", "ECO_AGGREGATE_TOTAL"),
         classif2 == "CUR_TYPE_LCU",
         sex == "SEX_T") %>%
  left_join(classif1, by = "classif1") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = obs_value, color = Classif1)) +
  scale_color_manual(values = viridis(3)[1:2]) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 1), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.3, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(1000, 2000, 3000, 5000, 8000, 10000, 20000, 30000, 50000),
                labels = dollar_format(suffix = "", prefix = "", accuracy = 1))

France

Code
EAR_4MTH_SEX_ECO_CUR_NB_A %>%
  filter(ref_area == "FRA",
         classif1 %in% c("ECO_AGGREGATE_MAN", "ECO_AGGREGATE_TOTAL"),
         classif2 == "CUR_TYPE_LCU",
         sex == "SEX_T") %>%
  left_join(classif1, by = "classif1") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = obs_value, color = Classif1)) +
  scale_color_manual(values = viridis(3)[1:2]) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 1), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.7, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(200, 3000, 200),
                labels = dollar_format(suffix = "", prefix = "", accuracy = 1))