source | dataset | .html | .RData |
---|---|---|---|
2024-10-29 | 2024-10-29 | ||
2024-10-29 | 2024-10-29 | ||
2024-10-29 | 2024-10-29 | ||
2024-10-29 | 2024-10-29 |
Cyclically adjusted balance (% of potential GDP)
Data - IMF - FM
Info
Data on public debt
Title | source | dataset | .html | .RData |
---|---|---|---|---|
Interest rates - monthly data | 2024-10-23 | 2024-10-08 | ||
Quarterly government debt | 2024-10-23 | 2024-10-08 | ||
Interest Rates | 2024-10-24 | 2024-10-24 | ||
Saving - saving | 2024-10-24 | 2024-10-24 | ||
Debt | 2021-08-22 | 2021-03-01 | ||
Fiscal Monitor | 2024-06-20 | 2020-03-13 | ||
Net lending/borrowing (also referred as overall balance) (% of GDP) | 2024-10-29 | 2024-10-29 | ||
Primary net lending/borrowing (also referred as primary balance) (% of GDP) | 2024-10-29 | 2024-10-29 | ||
Net debt (% of GDP) | 2024-10-29 | 2024-05-06 | ||
Historical Public Debt Database | 2024-06-20 | NA | ||
Quarterly Sector Accounts - Public Sector Debt, consolidated, nominal value | 2024-09-15 | 2024-04-15 | ||
Central government debt, total (% of GDP) | 2023-06-18 | 2024-09-18 | ||
Interest payments (current LCU) | 2023-06-18 | 2024-09-18 | ||
Interest payments (% of revenue) | 2023-06-18 | 2024-09-18 | ||
Interest payments (% of expense) | 2024-09-18 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-10-29 |
Last
TIME_PERIOD | FREQ | Nobs |
---|---|---|
2029 | A | 98 |
FREQ
Code
%>%
GGCB_G01_PGDP_PT left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
A | Annual | 3239 |
REF_AREA
Code
%>%
GGCB_G01_PGDP_PT left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
TIME_PERIOD
Code
%>%
GGCB_G01_PGDP_PT group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Table
Code
%>%
GGCB_G01_PGDP_PT filter(INDICATOR == "GGCB_G01_PGDP_PT",
== "2018") %>%
TIME_PERIOD left_join(REF_AREA, by = "REF_AREA") %>%
select(REF_AREA, Ref_area, OBS_VALUE) %>%
arrange(-OBS_VALUE) %>%
%>%
na.omit mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Italy, France, Germany, United States
Code
%>%
GGCB_G01_PGDP_PT filter(INDICATOR == "GGCB_G01_PGDP_PT",
%in% c("IT", "FR", "DE", "US")) %>%
REF_AREA left_join(REF_AREA, by = "REF_AREA") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
%>%
year_to_date2 mutate(OBS_VALUE = OBS_VALUE/100) %>%
rename(Counterpart_area = Ref_area) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE, color = color)) +
scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. balance (% of potential GDP)") + xlab("")
Individual Countries
Italy
Code
%>%
GGCB_G01_PGDP_PT filter(INDICATOR == "GGCB_G01_PGDP_PT",
== "IT") %>%
REF_AREA select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Netherlands
Code
%>%
GGCB_G01_PGDP_PT filter(INDICATOR == "GGCB_G01_PGDP_PT",
== "NL") %>%
REF_AREA select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Average Primary Surpluses
6 Countries
Code
%>%
GGCB_G01_PGDP_PT filter(INDICATOR == "GGCB_G01_PGDP_PT",
%in% c("NL", "IT", "DE", "FR", "ES", "GR")) %>%
REF_AREA %>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(Ref_area) %>%
summarise(`Primary Surplus (1995-2020)` = mean(OBS_VALUE)) %>%
mutate_at(vars(2), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
All Countries
Code
%>%
GGCB_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Code
Code
i_g("bib/imf/FM-data.jpeg")
Average Primary Surpluses
1995-2019
Code
%>%
GGCB_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Average Primary Surpluses (1995-2019) - Underlying Data
1992-
Code
%>%
GGCB_G01_PGDP_PT year_to_date2() %>%
filter(date >= as.Date("1992-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Primary Surplus (1992-2020)` = mean(OBS_VALUE)) %>%
arrange(-`Primary Surplus (1992-2020)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
1992-
Code
%>%
GGCB_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1992-01-01")) %>%
group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus (%)",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.1, 0.4),
legend.title = element_text(size = 10))
1995-2019
Code
%>%
GGCB_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.12, 0.4),
legend.title = element_text(size = 10))