| source | dataset | .html | .RData |
|---|---|---|---|
| imf | GGCB_G01_PGDP_PT | 2025-08-25 | 2025-08-05 |
| imf | GGCBP_G01_PGDP_PT | 2025-08-25 | 2025-08-05 |
| imf | GGXCNL_G01_GDP_PT | 2025-08-25 | 2025-08-05 |
| imf | GGXONLB_G01_GDP_PT | 2025-08-25 | 2025-08-05 |
Cyclically adjusted balance (% of potential GDP)
Data - IMF - FM
Info
Data on public debt
| Title | source | dataset | .html | .RData |
|---|---|---|---|---|
| Interest rates - monthly data | eurostat | ei_mfir_m | 2025-08-27 | 2025-08-24 |
| Quarterly government debt | eurostat | gov_10q_ggdebt | 2025-08-27 | 2025-08-24 |
| Interest Rates | fred | r | 2025-08-25 | 2025-08-28 |
| Saving - saving | fred | saving | 2025-08-25 | 2025-08-28 |
| Debt | gfd | debt | 2021-08-22 | 2021-03-01 |
| Fiscal Monitor | imf | FM | 2025-08-28 | 2020-03-13 |
| Net lending/borrowing (also referred as overall balance) (% of GDP) | imf | GGXCNL_G01_GDP_PT | 2025-08-25 | 2025-08-05 |
| Primary net lending/borrowing (also referred as primary balance) (% of GDP) | imf | GGXONLB_G01_GDP_PT | 2025-08-25 | 2025-08-05 |
| Net debt (% of GDP) | imf | GGXWDN_G01_GDP_PT | 2025-08-25 | 2025-07-27 |
| Historical Public Debt Database | imf | HPDD | 2025-08-25 | NA |
| Quarterly Sector Accounts - Public Sector Debt, consolidated, nominal value | oecd | QASA_TABLE7PSD | 2024-09-15 | 2025-05-24 |
| Central government debt, total (% of GDP) | wdi | GC.DOD.TOTL.GD.ZS | 2023-06-18 | 2025-08-24 |
| Interest payments (current LCU) | wdi | GC.XPN.INTP.CN | 2023-06-18 | 2025-08-24 |
| Interest payments (% of revenue) | wdi | GC.XPN.INTP.RV.ZS | 2023-06-18 | 2025-08-24 |
| Interest payments (% of expense) | wdi | GC.XPN.INTP.ZS | 2025-08-28 | 2025-08-24 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2025-08-27 |
Last
| TIME_PERIOD | FREQ | Nobs |
|---|---|---|
| 2030 | A | 98 |
FREQ
Code
GGCB_G01_PGDP_PT %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| FREQ | Freq | Nobs |
|---|---|---|
| A | Annual | 3330 |
REF_AREA
Code
GGCB_G01_PGDP_PT %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}TIME_PERIOD
Code
GGCB_G01_PGDP_PT %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()Table
Code
GGCB_G01_PGDP_PT %>%
filter(INDICATOR == "GGCB_G01_PGDP_PT",
TIME_PERIOD == "2018") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
select(REF_AREA, Ref_area, OBS_VALUE) %>%
arrange(-OBS_VALUE) %>%
na.omit %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Italy, France, Germany, United States
Code
GGCB_G01_PGDP_PT %>%
filter(INDICATOR == "GGCB_G01_PGDP_PT",
REF_AREA %in% c("IT", "FR", "DE", "US")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
year_to_date2 %>%
mutate(OBS_VALUE = OBS_VALUE/100) %>%
rename(Counterpart_area = Ref_area) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE, color = color)) +
scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. balance (% of potential GDP)") + xlab("")
Individual Countries
Italy
Code
GGCB_G01_PGDP_PT %>%
filter(INDICATOR == "GGCB_G01_PGDP_PT",
REF_AREA == "IT") %>%
select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Netherlands
Code
GGCB_G01_PGDP_PT %>%
filter(INDICATOR == "GGCB_G01_PGDP_PT",
REF_AREA == "NL") %>%
select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Average Primary Surpluses
6 Countries
Code
GGCB_G01_PGDP_PT %>%
filter(INDICATOR == "GGCB_G01_PGDP_PT",
REF_AREA %in% c("NL", "IT", "DE", "FR", "ES", "GR")) %>%
year_to_date2 %>%
filter(date >= as.Date("1995-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(Ref_area) %>%
summarise(`Primary Surplus (1995-2020)` = mean(OBS_VALUE)) %>%
mutate_at(vars(2), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}All Countries
Code
GGCB_G01_PGDP_PT %>%
year_to_date2 %>%
filter(date >= as.Date("1995-01-01"),
date <= as.Date("2019-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Code
Code
i_g("bib/imf/FM-data.jpeg")
Average Primary Surpluses
1995-2019
Code
GGCB_G01_PGDP_PT %>%
year_to_date2 %>%
filter(date >= as.Date("1995-01-01"),
date <= as.Date("2019-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}Average Primary Surpluses (1995-2019) - Underlying Data
1992-
Code
GGCB_G01_PGDP_PT %>%
year_to_date2() %>%
filter(date >= as.Date("1992-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Primary Surplus (1992-2020)` = mean(OBS_VALUE)) %>%
arrange(-`Primary Surplus (1992-2020)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/round/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}1992-
Code
GGCB_G01_PGDP_PT %>%
year_to_date2 %>%
filter(date >= as.Date("1992-01-01")) %>%
group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus (%)",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.1, 0.4),
legend.title = element_text(size = 10))
1995-2019
Code
GGCB_G01_PGDP_PT %>%
year_to_date2 %>%
filter(date >= as.Date("1995-01-01"),
date <= as.Date("2019-01-01")) %>%
group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.12, 0.4),
legend.title = element_text(size = 10))