source | dataset | Title | Download | Compile |
---|---|---|---|---|
eurostat | ei_mfir_m | Interest rates - monthly data | 2025-01-17 | [2025-01-17] |
eurostat | gov_10q_ggdebt | Quarterly government debt | 2025-01-05 | [2025-01-07] |
fred | r | Interest Rates | 2025-01-17 | [2025-01-17] |
fred | saving | Saving - saving | 2025-01-07 | [2025-01-07] |
gfd | debt | Debt | 2021-03-01 | [2021-08-22] |
imf | FM | Fiscal Monitor | 2020-03-13 | [2024-06-20] |
imf | GGXCNL_G01_GDP_PT | Net lending/borrowing (also referred as overall balance) (% of GDP) | 2025-01-17 | [2025-01-17] |
imf | GGXONLB_G01_GDP_PT | Primary net lending/borrowing (also referred as primary balance) (% of GDP) | 2025-01-17 | [2025-01-17] |
imf | GGXWDN_G01_GDP_PT | Net debt (% of GDP) | 2025-01-05 | [2024-10-29] |
imf | HPDD | Historical Public Debt Database | NA | [2024-06-20] |
oecd | QASA_TABLE7PSD | Quarterly Sector Accounts - Public Sector Debt, consolidated, nominal value | 2025-01-05 | [2024-09-15] |
wdi | GC.DOD.TOTL.GD.ZS | Central government debt, total (% of GDP) | 2024-09-18 | [2023-06-18] |
wdi | GC.XPN.INTP.CN | Interest payments (current LCU) | 2024-09-18 | [2023-06-18] |
wdi | GC.XPN.INTP.RV.ZS | Interest payments (% of revenue) | 2024-09-18 | [2023-06-18] |
wdi | GC.XPN.INTP.ZS | Interest payments (% of expense) | 2024-09-18 | [2024-09-18] |
Cyclically adjusted primary balance (% of potential GDP)
Data - IMF - FM
Info
LAST_DOWNLOAD
LAST_COMPILE
LAST_COMPILE |
---|
2025-01-17 |
Last
TIME_PERIOD | FREQ | Nobs |
---|---|---|
2029 | A | 96 |
FREQ
Code
%>%
GGCBP_G01_PGDP_PT left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
A | Annual | 3141 |
REF_AREA
Code
%>%
GGCBP_G01_PGDP_PT left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
TIME_PERIOD
Code
%>%
GGCBP_G01_PGDP_PT group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Table
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
== "2018") %>%
TIME_PERIOD left_join(REF_AREA, by = "REF_AREA") %>%
select(REF_AREA, Ref_area, OBS_VALUE) %>%
arrange(-OBS_VALUE) %>%
%>%
na.omit mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Italy, France, Germany, United States
1990-
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
%in% c("IT", "FR", "DE", "US", "GR", "ES")) %>%
REF_AREA left_join(REF_AREA, by = "REF_AREA") %>%
%>%
year_to_date2 filter(date <= as.Date("2019-01-01")) %>%
rename(Counterpart_area = Ref_area) %>%
left_join(colors, by = c("Counterpart_area" = "country")) %>%
mutate(OBS_VALUE = OBS_VALUE/100,
color = ifelse(REF_AREA == "US", color2, color)) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. primary balance (% of potential GDP)") + xlab("") +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
2005-
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
%in% c("IT", "FR", "DE", "US", "", "ES", "U2")) %>%
REF_AREA left_join(REF_AREA, by = "REF_AREA") %>%
%>%
year_to_date2 filter(date <= as.Date("2017-01-01"),
>= as.Date("2006-01-01")) %>%
date mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
rename(Counterpart_area = Ref_area) %>%
left_join(colors, by = c("Counterpart_area" = "country")) %>%
mutate(OBS_VALUE = OBS_VALUE/100,
color = ifelse(REF_AREA == "US", color2, color)) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. primary balance (% of potential GDP)") + xlab("") +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
2017-
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
%in% c("IT", "FR", "DE", "US", "", "ES", "U2")) %>%
REF_AREA left_join(REF_AREA, by = "REF_AREA") %>%
%>%
year_to_date2 filter(date >= as.Date("2017-01-01")) %>%
mutate(Ref_area = ifelse(REF_AREA == "U2", "Europe", Ref_area)) %>%
rename(Counterpart_area = Ref_area) %>%
left_join(colors, by = c("Counterpart_area" = "country")) %>%
mutate(OBS_VALUE = OBS_VALUE/100,
color = ifelse(REF_AREA == "US", color2, color)) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. primary balance (% of potential GDP)") + xlab("") +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Italy, France, Germany, United States
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
%in% c("IT", "FR", "DE", "US")) %>%
REF_AREA left_join(REF_AREA, by = "REF_AREA") %>%
%>%
year_to_date2 ggplot() +
geom_line(aes(x = date, y = OBS_VALUE/100, color = Ref_area, linetype = Ref_area)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.6, 0.9),
legend.title = element_blank(),
legend.direction = "horizontal") +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Cyclically adj. primary balance (% of potential GDP)") + xlab("") +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
Individual Countries
Italy
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
== "IT") %>%
REF_AREA select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Netherlands
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
== "NL") %>%
REF_AREA select(INDICATOR, TIME_PERIOD, OBS_VALUE) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 1), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Average Primary Surpluses
6 Countries
Code
%>%
GGCBP_G01_PGDP_PT filter(INDICATOR == "GGCBP_G01_PGDP_PT",
%in% c("NL", "IT", "DE", "FR", "ES", "GR")) %>%
REF_AREA %>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(Ref_area) %>%
summarise(`Primary Surplus (1995-2020)` = mean(OBS_VALUE)) %>%
mutate_at(vars(2), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
All Countries
Code
%>%
GGCBP_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Code
Code
i_g("bib/imf/FM-data.jpeg")
Average Primary Surpluses
1995-2019
Code
%>%
GGCBP_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1995-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1995-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
1990-2019
Code
%>%
GGCBP_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1990-01-01"),
<= as.Date("2019-01-01")) %>%
date left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Average Primary Surplus (1990-2019)` = mean(OBS_VALUE)) %>%
arrange(-`Average Primary Surplus (1990-2019)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Average Primary Surpluses (1995-2019) - Underlying Data
1992-
Code
%>%
GGCBP_G01_PGDP_PT year_to_date2() %>%
filter(date >= as.Date("1992-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(`Primary Surplus (1992-2020)` = mean(OBS_VALUE)) %>%
arrange(-`Primary Surplus (1992-2020)`) %>%
mutate_at(vars(3), funs(paste0(round(as.numeric(.), 3), " %"))) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
1992-
Code
%>%
GGCBP_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1992-01-01")) %>%
group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus (%)",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.1, 0.4),
legend.title = element_text(size = 10))
1995-2019
Code
%>%
GGCBP_G01_PGDP_PT %>%
year_to_date2 filter(date >= as.Date("1995-01-01"),
<= as.Date("2019-01-01")) %>%
date group_by(iso2c = REF_AREA) %>%
summarise(OBS_VALUE = mean(OBS_VALUE)) %>%
right_join(world, by = "iso2c") %>%
ggplot() + theme_void() +
geom_polygon(aes(long, lat, group = group, fill = OBS_VALUE/100),
colour = alpha("black", 1/2), size = 0.1) +
scale_fill_viridis_c(name = "Primary Surplus",
labels = scales::percent_format(accuracy = 1),
breaks = seq(-0.10, 0.2, 0.01),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1)) +
theme(legend.position = c(0.12, 0.4),
legend.title = element_text(size = 10))