| source | dataset | .html | .RData |
|---|---|---|---|
| oecd | HOU_EAR | 2024-05-13 | 2024-05-16 |
| oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
Hourly Earnings
Data - OECD
Info
Data on wages
Code
load_data("wages.RData")
wages %>%
source_dataset_title_file_updates()| source | dataset | .html | .RData |
|---|---|---|---|
| eurostat | earn_mw_cur | 2024-05-09 | 2024-05-09 |
| eurostat | ei_lmlc_q | 2024-05-09 | 2024-05-09 |
| eurostat | lc_lci_lev | 2024-05-09 | 2024-05-09 |
| eurostat | lc_lci_r2_q | 2024-05-10 | 2024-05-09 |
| eurostat | nama_10_lp_ulc | 2024-05-09 | 2024-05-09 |
| eurostat | namq_10_lp_ulc | 2024-05-09 | 2024-05-09 |
| eurostat | tps00155 | 2024-05-09 | 2024-05-09 |
| fred | wage | 2024-05-10 | 2024-05-10 |
| ilo | EAR_4MTH_SEX_ECO_CUR_NB_A | 2023-06-01 | 2023-06-01 |
| ilo | EAR_XEES_SEX_ECO_NB_Q | 2023-06-01 | 2023-06-01 |
| oecd | AV_AN_WAGE | 2024-04-16 | 2023-09-09 |
| oecd | AWCOMP | 2024-04-16 | 2023-09-09 |
| oecd | EAR_MEI | 2024-04-16 | 2024-04-16 |
| oecd | HH_DASH | 2024-04-16 | 2023-09-09 |
| oecd | MIN2AVE | 2024-04-16 | 2023-09-09 |
| oecd | RMW | 2024-04-16 | 2024-03-12 |
| oecd | ULC_EEQ | 2024-04-16 | 2024-04-15 |
Last
| obsTime | FREQ | Nobs |
|---|---|---|
| 2023 | A | 84 |
| 2022 | A | 93 |
| 2021 | A | 95 |
| 2024-04 | M | 3 |
| 2024-03 | M | 3 |
| 2024-02 | M | 9 |
| 2024-Q1 | Q | 3 |
| 2023-Q4 | Q | 83 |
| 2023-Q3 | Q | 87 |
Detail
The Hourly Earnings dataset contains predominantly monthly statistics, and associated statistical methodological information, for the OECD member countries and for selected non-member economies.
The Hourly Earnings dataset provides monthly and quarterly data on employees’ earnings series. It includes earnings series in manufacturing and for the private economic sector. Mostly the sources of the data are business surveys covering different economic sectors, but in some cases administrative data are also used.
The target series for hourly earnings correspond to seasonally adjusted average total earnings paid per employed person per hour, including overtime pay and regularly recurring cash supplements. Where hourly earnings series are not available, a series could refer to weekly or monthly earnings. In this case, a series for full-time or full-time equivalent employees is preferred to an all employees series.
SECTOR
Code
HOU_EAR %>%
left_join(SECTOR, by = "SECTOR") %>%
group_by(SECTOR, Sector) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()| SECTOR | Sector | nobs |
|---|---|---|
| S1 | Total economy | 35273 |
| S1D | Private sector | 6637 |
ADJUSTMENT
Code
HOU_EAR %>%
left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()| ADJUSTMENT | Adjustment | nobs |
|---|---|---|
| Y | Calendar and seasonally adjusted | 25816 |
| N | Neither seasonally adjusted nor calendar adjusted | 16094 |
FREQ
Code
HOU_EAR %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()| FREQ | Freq | nobs |
|---|---|---|
| M | Monthly | 22385 |
| Q | Quarterly | 15659 |
| A | Annual | 3866 |
REF_AREA
Code
HOU_EAR %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}obsTime
Code
HOU_EAR %>%
group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional()Eurozone, United States
All
Code
HOU_EAR %>%
filter(SECTOR == "S1",
FREQ == "Q",
REF_AREA %in% c("USA", "EA19"),
ADJUSTMENT == "Y") %>%
quarter_to_date %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
1996-
Quarterly
Code
HOU_EAR %>%
filter(SECTOR == "S1",
FREQ == "Q",
REF_AREA %in% c("USA", "EA19"),
ADJUSTMENT == "Y") %>%
quarter_to_date %>%
filter(date >= as.Date("1996-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
Monthly
Code
HOU_EAR %>%
filter(SECTOR == "S1",
FREQ == "M",
REF_AREA %in% c("USA", "EA19"),
ADJUSTMENT == "Y") %>%
month_to_date %>%
filter(date >= as.Date("1996-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
Eurozone, Japan, United States, United Kingdom
All
Code
HOU_EAR %>%
filter(SECTOR == "S1",
FREQ == "Q",
REF_AREA %in% c("USA", "JPN", "EA19", "GBR", "HUN", "POL"),
ADJUSTMENT == "Y") %>%
quarter_to_date %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = " k", prefix = "")) +
ylab("") + xlab("")
2015-
Code
HOU_EAR %>%
filter(SECTOR == "S1",
FREQ == "Q",
REF_AREA %in% c("USA", "JPN", "EA19", "GBR", "HUN", "POL"),
ADJUSTMENT == "Y") %>%
quarter_to_date %>%
filter(date >= as.Date("2015-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")