source | dataset | .html | .RData |
---|---|---|---|
oecd | HOU_EAR | 2024-05-13 | 2024-05-16 |
oecd | PRICES_CPI | 2024-04-16 | 2024-04-15 |
Hourly Earnings
Data - OECD
Info
Data on wages
Code
load_data("wages.RData")
%>%
wages source_dataset_title_file_updates()
source | dataset | .html | .RData |
---|---|---|---|
eurostat | earn_mw_cur | 2024-05-09 | 2024-05-09 |
eurostat | ei_lmlc_q | 2024-05-09 | 2024-05-09 |
eurostat | lc_lci_lev | 2024-05-09 | 2024-05-09 |
eurostat | lc_lci_r2_q | 2024-05-10 | 2024-05-09 |
eurostat | nama_10_lp_ulc | 2024-05-09 | 2024-05-09 |
eurostat | namq_10_lp_ulc | 2024-05-09 | 2024-05-09 |
eurostat | tps00155 | 2024-05-09 | 2024-05-09 |
fred | wage | 2024-05-10 | 2024-05-10 |
ilo | EAR_4MTH_SEX_ECO_CUR_NB_A | 2023-06-01 | 2023-06-01 |
ilo | EAR_XEES_SEX_ECO_NB_Q | 2023-06-01 | 2023-06-01 |
oecd | AV_AN_WAGE | 2024-04-16 | 2023-09-09 |
oecd | AWCOMP | 2024-04-16 | 2023-09-09 |
oecd | EAR_MEI | 2024-04-16 | 2024-04-16 |
oecd | HH_DASH | 2024-04-16 | 2023-09-09 |
oecd | MIN2AVE | 2024-04-16 | 2023-09-09 |
oecd | RMW | 2024-04-16 | 2024-03-12 |
oecd | ULC_EEQ | 2024-04-16 | 2024-04-15 |
Last
obsTime | FREQ | Nobs |
---|---|---|
2023 | A | 84 |
2022 | A | 93 |
2021 | A | 95 |
2024-04 | M | 3 |
2024-03 | M | 3 |
2024-02 | M | 9 |
2024-Q1 | Q | 3 |
2023-Q4 | Q | 83 |
2023-Q3 | Q | 87 |
Detail
The Hourly Earnings dataset contains predominantly monthly statistics, and associated statistical methodological information, for the OECD member countries and for selected non-member economies.
The Hourly Earnings dataset provides monthly and quarterly data on employees’ earnings series. It includes earnings series in manufacturing and for the private economic sector. Mostly the sources of the data are business surveys covering different economic sectors, but in some cases administrative data are also used.
The target series for hourly earnings correspond to seasonally adjusted average total earnings paid per employed person per hour, including overtime pay and regularly recurring cash supplements. Where hourly earnings series are not available, a series could refer to weekly or monthly earnings. In this case, a series for full-time or full-time equivalent employees is preferred to an all employees series.
SECTOR
Code
%>%
HOU_EAR left_join(SECTOR, by = "SECTOR") %>%
group_by(SECTOR, Sector) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()
SECTOR | Sector | nobs |
---|---|---|
S1 | Total economy | 35273 |
S1D | Private sector | 6637 |
ADJUSTMENT
Code
%>%
HOU_EAR left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()
ADJUSTMENT | Adjustment | nobs |
---|---|---|
Y | Calendar and seasonally adjusted | 25816 |
N | Neither seasonally adjusted nor calendar adjusted | 16094 |
FREQ
Code
%>%
HOU_EAR left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(nobs = n()) %>%
arrange(-nobs) %>%
print_table_conditional()
FREQ | Freq | nobs |
---|---|---|
M | Monthly | 22385 |
Q | Quarterly | 15659 |
A | Annual | 3866 |
REF_AREA
Code
%>%
HOU_EAR left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
obsTime
Code
%>%
HOU_EAR group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional()
Eurozone, United States
All
Code
%>%
HOU_EAR filter(SECTOR == "S1",
== "Q",
FREQ %in% c("USA", "EA19"),
REF_AREA == "Y") %>%
ADJUSTMENT %>%
quarter_to_date left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
1996-
Quarterly
Code
%>%
HOU_EAR filter(SECTOR == "S1",
== "Q",
FREQ %in% c("USA", "EA19"),
REF_AREA == "Y") %>%
ADJUSTMENT %>%
quarter_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
Monthly
Code
%>%
HOU_EAR filter(SECTOR == "S1",
== "M",
FREQ %in% c("USA", "EA19"),
REF_AREA == "Y") %>%
ADJUSTMENT %>%
month_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA) %>%
arrange(date) %>%
mutate(obsValue = 100*obsValue/obsValue[1]) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_2flags +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")
Eurozone, Japan, United States, United Kingdom
All
Code
%>%
HOU_EAR filter(SECTOR == "S1",
== "Q",
FREQ %in% c("USA", "JPN", "EA19", "GBR", "HUN", "POL"),
REF_AREA == "Y") %>%
ADJUSTMENT %>%
quarter_to_date left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = " k", prefix = "")) +
ylab("") + xlab("")
2015-
Code
%>%
HOU_EAR filter(SECTOR == "S1",
== "Q",
FREQ %in% c("USA", "JPN", "EA19", "GBR", "HUN", "POL"),
REF_AREA == "Y") %>%
ADJUSTMENT %>%
quarter_to_date filter(date >= as.Date("2015-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA19", "Europe", Ref_area)) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA19", color2, color)) %>%
rename(Location = Ref_area) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + theme_minimal() + add_6flags +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 500, 10),
labels = scales::dollar_format(accuracy = 1, suffix = "", prefix = "")) +
ylab("") + xlab("")