Indices de prix et cours des matières premières

Data - INSEE

Info

source dataset Title .html .rData
insee IPPMP-NF Indices de prix et cours des matières premières 2026-01-30 2026-01-29

Informations

Données sur l’énergie

source dataset Title .html .rData
cre TRV_electricite TRV électricité 2024-10-27 2025-06-22
cre TRV_gaz TRV gaz 2024-10-07 2021-09-05
insee IPPMP-NF Indices de prix et cours des matières premières 2026-01-30 2026-01-29
insee econ-gen-solde-ech-ext-2 Solde des échanges extérieurs et principales composantes 2026-01-29 2025-05-24
insee t_5404 5.404 – Importations de biens et de services par produit à prix courants (En milliards d'euros) 2026-01-30 2021-08-01
sdes bilan_energetique Bilan énergétique 2025-06-26 2025-06-26

Data on energy

Code
load_data("energy.RData")
energy %>%
  source_dataset_file_updates()
source dataset Title .html .rData
ec WOB Weekly Oil Bulletin 2026-01-16 2024-08-25
eurostat ei_isen_m Energy - monthly data 2026-01-29 2026-01-29
eurostat nrg_bal_c Complete energy balances 2023-12-31 2026-01-29
eurostat nrg_pc_202 Gas prices for household consumers - bi-annual data (from 2007 onwards) 2026-01-29 2026-01-29
eurostat nrg_pc_203 Gas prices for non-household consumers - bi-annual data (from 2007 onwards) 2023-06-11 2026-01-29
eurostat nrg_pc_203_c Gas prices components for non-household consumers - annual data 2026-01-29 2026-01-29
eurostat nrg_pc_203_h Gas prices for industrial consumers - bi-annual data (until 2007) 2026-01-29 2026-01-29
eurostat nrg_pc_203_v Non-household consumption volumes of gas by consumption bands 2026-01-29 2026-01-29
eurostat nrg_pc_204 Electricity prices for household consumers - bi-annual data (from 2007 onwards) 2026-01-29 2026-01-29
eurostat nrg_pc_205 Electricity prices for non-household consumers - bi-annual data (from 2007 onwards) 2023-06-11 2026-01-29
fred energy Energy 2026-01-29 2026-01-29
iea world_energy_balances_highlights_2022 World Energy Balances Highlights (2022 edition) 2024-06-20 2023-04-24
wb CMO World Bank Commodity Price Data (The Pink Sheet) 2026-01-07 2026-01-07
wdi EG.GDP.PUSE.KO.PP.KD GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent) 2026-01-29 2026-01-29
wdi EG.USE.PCAP.KG.OE Energy use (kg of oil equivalent per capita) 2026-01-29 2026-01-29
yahoo energy Energy 2026-01-29 2026-01-29

LAST_DOWNLOAD

Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/insee/IPPMP-NF.RData")$mtime)) %>%
  print_table_conditional()
LAST_DOWNLOAD
2026-01-31

Last

Code
`IPPMP-NF` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  head(1) %>%
  print_table_conditional()
TIME_PERIOD Nobs
2025-12 131

TITLE_FR

Code
`IPPMP-NF` %>%
  group_by(IDBANK, TITLE_FR) %>%
  summarise(Nobs = n(),
            date1 = first(TIME_PERIOD),
            date2 = last(TIME_PERIOD)) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

BASIND

Code
`IPPMP-NF` %>%
  left_join(BASIND, by = "BASIND") %>%
  group_by(BASIND, Basind) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
BASIND Basind Nobs
SO Sans objet 37896
2010 2010 29356
2015 2015 379

DEVISE

Code
`IPPMP-NF` %>%
  left_join(DEVISE, by = "DEVISE") %>%
  group_by(DEVISE, Devise) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
DEVISE Devise Nobs
SO Sans objet 65065
COUR_NORV NA 432
DA Dollar australien 432
LIT Livre sterling 432
USD Dollar US 432
YUAN NA 432
DM Dollar malais 406

MONNAIE

Code
`IPPMP-NF` %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  group_by(MONNAIE, Monnaie) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
MONNAIE Monnaie Nobs
0048 Dollar US 17799
E Prix en euros 15040
D Prix en devises 12395
SO Sans objet 9644
0151 Cent US 5601
0207 Euro 3361
0201 Euro avec rétropolation en euro converti à taux fixe 1702
0147 Yuan chinois 1261
0014 Couronne norvégienne 432
0121 Ringgit malaisien 396

MATIERES_PREMIERES

Code
`IPPMP-NF` %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  group_by(MATIERES_PREMIERES, Matieres_premieres) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

NOUVEAU_FOURNISSEUR

Code
`IPPMP-NF` %>%
  left_join(NOUVEAU_FOURNISSEUR, by = "NOUVEAU_FOURNISSEUR") %>%
  group_by(NOUVEAU_FOURNISSEUR, Nouveau_fournisseur) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
NOUVEAU_FOURNISSEUR Nouveau_fournisseur Nobs
NOUVEAU Nouveau 67397
SO Sans objet 234

INDICATEUR

Code
`IPPMP-NF` %>%
  left_join(INDICATEUR, by = "INDICATEUR") %>%
  group_by(INDICATEUR, Indicateur) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
INDICATEUR Indicateur Nobs
CIMP Cours internationaux des matières premières 35709
IPIMPI Indices des prix internationaux des matières importées 19712
IIEMP Indices internationaux en euros des matières premières 9644
CDECMPI Cours des devises étrangères 2566

NATURE

Code
`IPPMP-NF` %>%
  left_join(NATURE, by = "NATURE") %>%
  group_by(NATURE, Nature) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
NATURE Nature Nobs
VALEUR_ABSOLUE Valeur absolue 37896
INDICE Indice 29735

TIME_PERIOD

Code
`IPPMP-NF` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  print_table_conditional()

Prix du pétrole

Valeur

All

Code
`IPPMP-NF` %>%
  filter(INDICATEUR == "CIMP",
         MATIERES_PREMIERES == "41") %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  month_to_date %>%
  ggplot + theme_minimal() + xlab("") + ylab("Pétrole brut  Brent (Londres) – par baril") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Monnaie)) +
  scale_x_date(breaks = seq(1990, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = seq(0, 200, 10)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

Log

Tous

Code
`IPPMP-NF` %>%
  filter(INDICATEUR == "CIMP",
         MATIERES_PREMIERES == "41") %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  month_to_date %>%
  ggplot + theme_minimal() + xlab("") + ylab("Pétrole brut  Brent (Londres) – par baril") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Monnaie)) +
  scale_x_date(breaks = seq(1990, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(0, 200, 10)) +
  theme(legend.position = c(0.3, 0.9),
        legend.title = element_blank())

2004-

Code
`IPPMP-NF` %>%
  filter(INDICATEUR == "CIMP",
         MATIERES_PREMIERES == "41") %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  month_to_date %>%
  filter(date >= as.Date("2004-01-01")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Pétrole brut  Brent (Londres) – par baril") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Monnaie)) +
  scale_x_date(breaks = seq(1990, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(0, 200, 10)) +
  theme(legend.position = c(0.3, 0.2),
        legend.title = element_blank())

2010-

Code
`IPPMP-NF` %>%
  filter(INDICATEUR == "CIMP",
         MATIERES_PREMIERES == "41") %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  month_to_date %>%
  filter(date >= as.Date("2004-01-01")) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Pétrole brut  Brent (Londres) – par baril") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Monnaie)) +
  scale_x_date(breaks = seq(1990, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_log10(breaks = seq(0, 200, 10)) +
  theme(legend.position = c(0.3, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))

2 years

Code
`IPPMP-NF` %>%
  filter(INDICATEUR == "CIMP",
         MATIERES_PREMIERES == "41") %>%
  left_join(MATIERES_PREMIERES, by = "MATIERES_PREMIERES") %>%
  left_join(MONNAIE, by = "MONNAIE") %>%
  month_to_date %>%
  filter(date >= Sys.Date() - years(2)) %>%
  ggplot + theme_minimal() + xlab("") + ylab("Pétrole brut  Brent (Londres) – par baril") +
  geom_line(aes(x = date, y = OBS_VALUE, color = Monnaie)) +
  scale_x_date(breaks = "2 months",
               labels = date_format("%b %Y")) +
  scale_y_log10(breaks = seq(0, 200, 10)) +
  theme(legend.position = c(0.3, 0.2),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  geom_text(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1), color = Monnaie), 
                  fontface ="plain", size = 3)