5.404 – Importations de biens et de services par produit à prix courants (En milliards d’euros)

Data - INSEE

2019

All

Code
t_5404 %>%
  filter(year == "2019") %>%
  select(-year) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

A5

Code
t_5404 %>%
  filter(year == "2019",
         grepl("A5", sector)) %>%
  select(-year) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

A17

Code
t_5404 %>%
  filter(year == "2019",
         grepl("A17", sector)) %>%
  select(-year) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

A38

Code
t_5404 %>%
  filter(year == "2019",
         grepl("A38", sector)) %>%
  select(-year) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Total-DE % du PIB

1949-2020

Code
t_5404 %>%
  filter(sector %in% c("TOTAL", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(TOTAL.no.DE = TOTAL - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.35, 0.9)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 2),
                     labels = scales::percent_format(accuracy = 1))

1980-2020

Code
t_5404 %>%
  filter(sector %in% c("TOTAL", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(TOTAL.no.DE = TOTAL - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("1980-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.35, 0.9)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 2),
                     labels = scales::percent_format(accuracy = 1))

2000-2020

Code
t_5404 %>%
  filter(sector %in% c("TOTAL", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(TOTAL.no.DE = TOTAL - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("2000-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.35, 0.9)) +
  scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 2),
                     labels = scales::percent_format(accuracy = 1))

BE-DE % du PIB

1949-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.35, 0.9)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 2),
                     labels = scales::percent_format(accuracy = 1))

1980-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("1980-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.92)) +
  scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

2000-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("2000-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value/gdp, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.92)) +
  scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 0.01*seq(0, 100, 0.5),
                     labels = scales::percent_format(accuracy = 0.1))

Logarithms

2000-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("1980-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations") + xlab("") +
  geom_line(aes(x = date, y = value, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.92)) +
  scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 100*seq(0, 100, 1),
                     labels = scales::dollar_format(prefix = "", suffix = " Mds€", accuracy = 1))

1980-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  filter(date >= as.Date("1980-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("Importations") + xlab("") +
  geom_line(aes(x = date, y = value, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.92)) +
  scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = 100*seq(0, 100, 1),
                     labels = scales::dollar_format(prefix = "", suffix = " Mds€", accuracy = 1))

1950-2020

Code
t_5404 %>%
  filter(sector %in% c("A5.BE", "A17.DE")) %>%
  select(-Sector) %>%
  spread(sector, value) %>%
  mutate(A21.C = A5.BE - A17.DE) %>%
  select(-A17.DE) %>%
  mutate(date = paste0(year, "-01-01") %>% as.Date) %>%
  select(-year) %>%
  gather(sector, value, -date) %>%
  left_join(sector, by = "sector") %>%
  left_join(gdp, by = "date") %>%
  ggplot(.) + theme_minimal() + ylab("Importations") + xlab("") +
  geom_line(aes(x = date, y = value, color = Sector, linetype = Sector)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3, 0.92)) +
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_color_manual(values = viridis(3)[1:2]) +
  scale_y_log10(breaks = c(1,2,5, 10, 20, 50, 100, 200, 500, 1000, 2000),
                labels = scales::dollar_format(prefix = "", suffix = " Mds€", accuracy = 1))