Comptes de production et d’exploitation par branche

Data - INSEE

Info

source dataset Title .html .rData
insee CNA-2014-CPEB Comptes de production et d’exploitation par branche 2025-10-10 2025-10-10
insee CNA-2014-PIB Produit intérieur brut (PIB) et ses composantes 2025-10-10 2025-10-09

Données sur la macroéconomie en France

source dataset Title .html .rData
bdf CFT Comptes Financiers Trimestriels 2025-08-28 2025-03-09
insee CNA-2014-CONSO-SI Dépenses de consommation finale par secteur institutionnel 2025-10-10 2025-10-09
insee CNA-2014-CSI Comptes des secteurs institutionnels 2025-10-10 2025-10-09
insee CNA-2014-FBCF-BRANCHE Formation brute de capital fixe (FBCF) par branche 2025-10-10 2025-10-09
insee CNA-2014-FBCF-SI Formation brute de capital fixe (FBCF) par secteur institutionnel 2025-10-10 2025-10-09
insee CNA-2014-RDB Revenu et pouvoir d’achat des ménages 2025-10-10 2025-10-09
insee CNA-2020-CONSO-MEN Consommation des ménages 2025-10-10 2025-09-30
insee CNA-2020-PIB Produit intérieur brut (PIB) et ses composantes 2025-10-10 2025-05-28
insee CNT-2014-CB Comptes des branches 2025-10-10 2025-10-09
insee CNT-2014-CSI Comptes de secteurs institutionnels 2025-10-10 2025-10-09
insee CNT-2014-OPERATIONS Opérations sur biens et services 2025-10-10 2025-10-09
insee CNT-2014-PIB-EQB-RF Équilibre du produit intérieur brut 2025-10-10 2025-10-09
insee CONSO-MENAGES-2020 Consommation des ménages en biens 2025-10-10 2025-10-09
insee ICA-2015-IND-CONS Indices de chiffre d'affaires dans l'industrie et la construction 2025-10-10 2025-10-09
insee conso-mensuelle Consommation de biens, données mensuelles 2025-10-10 2023-07-04
insee t_1101 1.101 – Le produit intérieur brut et ses composantes à prix courants (En milliards d'euros) 2025-10-10 2022-01-02
insee t_1102 1.102 – Le produit intérieur brut et ses composantes en volume aux prix de l'année précédente chaînés (En milliards d'euros 2014) 2025-10-10 2020-10-30
insee t_1105 1.105 – Produit intérieur brut - les trois approches à prix courants (En milliards d'euros) - t_1105 2025-10-10 2020-10-30

LAST_UPDATE

Code
`CNA-2014-CPEB` %>%
  group_by(LAST_UPDATE) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(LAST_UPDATE)) %>%
  print_table_conditional()
LAST_UPDATE Nobs
2023-05-31 83590
2022-06-14 32257

LAST_COMPILE

LAST_COMPILE
2025-10-11

Last

Code
`CNA-2014-CPEB` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  head(1) %>%
  print_table_conditional()
TIME_PERIOD Nobs
2022 831

CNA_ACTIVITE

Code
`CNA-2014-CPEB` %>%
  left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
  group_by(CNA_ACTIVITE, Cna_activite) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

INDICATEUR

Code
`CNA-2014-CPEB` %>%
  group_by(INDICATEUR) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
INDICATEUR Nobs
CNA_CPEB 115847

OPERATION

Code
`CNA-2014-CPEB` %>%
  left_join(OPERATION,  by = "OPERATION") %>%
  group_by(OPERATION, Operation) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

NATURE

Code
`CNA-2014-CPEB` %>%
  left_join(NATURE,  by = "NATURE") %>%
  group_by(NATURE, Nature) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
NATURE Nature Nobs
VALEUR_ABSOLUE Valeur absolue 93750
INDICE Indice 22097

TITLE_FR

Code
`CNA-2014-CPEB` %>%
  group_by(IDBANK, TITLE_FR) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

UNIT_MEASURE

Code
`CNA-2014-CPEB` %>%
  group_by(UNIT_MEASURE) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) print_table(.) else .}
UNIT_MEASURE Nobs
EUR2014 22007
EUROS_COURANTS 71743
SO 22097

Excédent Brut d’Exploitation, Revenu Mixte Brut

Deux + Somme

Code
`CNA-2014-CPEB` %>%
  left_join(OPERATION,  by = "OPERATION") %>%
  filter(CNA_ACTIVITE == "NNTOTAL",
         OPERATION %in% c("B3G", "B2G", "B2GEB3G")) %>%
  year_to_date() %>%
  select(date, OPERATION, Operation, OBS_VALUE, UNIT_MEASURE) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/1000, color = Operation)) + 
  theme_minimal() +  xlab("") + ylab("") +
  
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 2000, 100),
                     labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))

Deux

Code
`CNA-2014-CPEB` %>%
  left_join(OPERATION,  by = "OPERATION") %>%
  filter(CNA_ACTIVITE == "NNTOTAL",
         OPERATION %in% c("B3G", "B2G")) %>%
  year_to_date() %>%
  select(date, OPERATION, Operation, OBS_VALUE, UNIT_MEASURE) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/1000, color = Operation)) + 
  theme_minimal() +  xlab("") + ylab("") +
  
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.25, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 2000, 100),
                     labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))

Rémunération des Salariés

Code
`CNA-2014-CPEB` %>%
  left_join(OPERATION,  by = "OPERATION") %>%
  filter(CNA_ACTIVITE == "NNTOTAL",
         OPERATION %in% c("D1", "D11", "D12")) %>%
  year_to_date() %>%
  select(date, OPERATION, Operation, OBS_VALUE, UNIT_MEASURE) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/1000, color = Operation)) + 
  theme_minimal() +  xlab("") + ylab("") +
  
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 2000, 100),
                     labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))

Production

Code
`CNA-2014-CPEB` %>%
  left_join(OPERATION,  by = "OPERATION") %>%
  filter(CNA_ACTIVITE == "NNTOTAL",
         OPERATION %in% c("P1", "P11", "P12"),
         NATURE == "VALEUR_ABSOLUE",
         UNIT_MEASURE == "EUROS_COURANTS") %>%
  year_to_date() %>%
  select(date, OPERATION, Operation, OBS_VALUE, UNIT_MEASURE) %>%
  ggplot + geom_line(aes(x = date, y = OBS_VALUE/1000, color = Operation)) + 
  theme_minimal() +  xlab("") + ylab("") +
  
  scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
               labels = date_format("%Y")) +
  theme(legend.position = c(0.35, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 7000, 500),
                     labels = dollar_format(suffix = " Mds€", prefix = "", accuracy = 1))