source | dataset | .html | .RData |
---|---|---|---|
insee | CNT-2020-PIB-EQB-RF | 2025-05-18 | 2025-05-24 |
Équilibre du produit intérieur brut
Data - Insee
Info
Info
Données sur la macroéconomie en France
source | dataset | .html | .RData |
---|---|---|---|
bdf | CFT | 2025-03-27 | 2025-03-09 |
insee | CNA-2014-CONSO-SI | 2025-05-24 | 2025-05-24 |
insee | CNA-2014-CSI | 2025-05-24 | 2025-05-24 |
insee | CNA-2014-FBCF-BRANCHE | 2025-05-24 | 2025-05-24 |
insee | CNA-2014-FBCF-SI | 2024-06-07 | 2025-05-24 |
insee | CNA-2014-RDB | 2025-05-24 | 2025-05-24 |
insee | CNA-2020-CONSO-MEN | 2025-05-24 | 2024-09-12 |
insee | CNA-2020-PIB | 2025-05-24 | 2025-05-06 |
insee | CNT-2014-CB | 2025-05-24 | 2025-05-24 |
insee | CNT-2014-CSI | 2025-05-24 | 2025-05-24 |
insee | CNT-2014-OPERATIONS | 2025-05-24 | 2025-05-24 |
insee | CNT-2014-PIB-EQB-RF | 2025-05-24 | 2025-05-24 |
insee | CONSO-MENAGES-2020 | 2025-05-18 | 2025-05-24 |
insee | conso-mensuelle | 2024-06-07 | 2023-07-04 |
insee | ICA-2015-IND-CONS | 2025-05-24 | 2025-05-24 |
insee | t_1101 | 2025-05-18 | 2022-01-02 |
insee | t_1102 | 2025-05-18 | 2020-10-30 |
insee | t_1105 | 2025-05-18 | 2020-10-30 |
LAST_UPDATE
Code
`CNT-2020-PIB-EQB-RF` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2025-04-30 | 20295 |
LAST_COMPILE
LAST_COMPILE |
---|
2025-05-24 |
Last
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(TIME_PERIOD == max(TIME_PERIOD)) %>%
select(TIME_PERIOD, TITLE_FR, OBS_VALUE) %>%
print_table_conditional()
Nobs
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation, CNA_PRODUIT) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TITLE_FR
Code
`CNT-2020-PIB-EQB-RF` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALORISATION
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(VALORISATION, by = "VALORISATION") %>%
group_by(VALORISATION, Valorisation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALORISATION | Valorisation | Nobs |
---|---|---|
L | Volumes aux prix de l'année précédente chaînés | 10846 |
V | Valeurs aux prix courants | 7625 |
SO | Sans objet | 1824 |
OPERATION
All
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs |
---|---|---|
P3 | P3 - Dépense de consommation finale | 2430 |
PIB | PIB - Produit intérieur brut | 990 |
DINTF | Demande intérieure totale finale | 910 |
DINTFHS | Demande intérieure totale finale hors stocks | 910 |
P31 | P31 - Dépense de consommation finale individuelle | 910 |
P32 | P32 - Dépense de consommation finale collective | 910 |
P4 | P4 - Consommation finale effective | 910 |
P51 | P51 - Formation brute de capital fixe | 910 |
P51B | P51B - FBCF des entreprises financières (y compris entreprises individuelles) | 910 |
P51G | P51G - Formation brute de capital fixe | 910 |
P51M | P51M - FBCF des ménages (hors entreprises individuelles) | 910 |
P51P | P51P - FBCF des ISBLSM | 910 |
P51S | P51S - FBCF des entreprises non financières (y compris entreprises individuelles) | 910 |
P6 | P6 - Exportations de biens et services | 910 |
P7 | P7 - Importations de biens et services | 910 |
P54 | P54 - Stocks et acquisitions moins cession d'objets de valeur | 605 |
SOLDE | SOLDE - Solde extérieur total | 605 |
P52 | P52 - Variation de stocks | 486 |
D211 | D211 - Impôts de type 'Taxe à la Valeur Ajoutée' (TVA) | 305 |
D212 | D212 - Impôts sur les importations autres que la taxe à la valeur ajoutée | 305 |
D214 | D214 - Autres impôts sur les produits | 305 |
D319 | D319 - Autres subventions sur les produits | 305 |
P53 | P53 - Acquisitions moins cession d'objets de valeur | 305 |
D11 | D11 - Salaires et traitements bruts | 304 |
D121 | D121 - Cotisations sociales effectives à la charge des employeurs | 304 |
D122 | D122 - Cotisations sociales imputées à la charge des employeurs | 304 |
D291 | D291 - Impôts sur les salaires et la main-d'oeuvre | 304 |
D292 | D292 - Impôts divers sur la production | 304 |
D39 | D39 - Subventions d'exploitation | 304 |
Volume
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n(),
Last = last(OBS_VALUE)) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs | Last |
---|---|---|---|
DINTF | Demande intérieure totale finale | 305 | 70368.00 |
DINTFHS | Demande intérieure totale finale hors stocks | 305 | 68437.00 |
P3 | P3 - Dépense de consommation finale | 305 | 17988.00 |
P31 | P31 - Dépense de consommation finale individuelle | 305 | 8703.00 |
P32 | P32 - Dépense de consommation finale collective | 305 | 9353.00 |
P4 | P4 - Consommation finale effective | 305 | 56141.00 |
P6 | P6 - Exportations de biens et services | 305 | 3999.00 |
P7 | P7 - Importations de biens et services | 305 | 3951.00 |
PIB | PIB - Produit intérieur brut | 305 | 69933.00 |
P52 | P52 - Variation de stocks | 181 | 0.54 |
Valeur
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
group_by(OPERATION, Operation) %>%
summarise(Nobs = n(),
Last = last(OBS_VALUE)) %>%
arrange(-Nobs) %>%
print_table_conditional()
OPERATION | Operation | Nobs | Last |
---|---|---|---|
D211 | D211 - Impôts de type 'Taxe à la Valeur Ajoutée' (TVA) | 305 | 231 |
D212 | D212 - Impôts sur les importations autres que la taxe à la valeur ajoutée | 305 | 4 |
D214 | D214 - Autres impôts sur les produits | 305 | 153 |
D319 | D319 - Autres subventions sur les produits | 305 | -27 |
DINTF | Demande intérieure totale finale | 305 | 3151 |
DINTFHS | Demande intérieure totale finale hors stocks | 305 | 3030 |
P3 | P3 - Dépense de consommation finale | 305 | 483 |
P31 | P31 - Dépense de consommation finale individuelle | 305 | 243 |
P32 | P32 - Dépense de consommation finale collective | 305 | 239 |
P4 | P4 - Consommation finale effective | 305 | 2415 |
P52 | P52 - Variation de stocks | 305 | 120 |
P53 | P53 - Acquisitions moins cession d'objets de valeur | 305 | 2 |
P54 | P54 - Stocks et acquisitions moins cession d'objets de valeur | 305 | 122 |
P6 | P6 - Exportations de biens et services | 305 | 462 |
P7 | P7 - Importations de biens et services | 305 | 431 |
PIB | PIB - Produit intérieur brut | 305 | 3182 |
SOLDE | SOLDE - Solde extérieur total | 305 | 31 |
NATURE
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NATURE | Nature | Nobs |
---|---|---|
VALEUR_ABSOLUE | Valeur absolue | 14815 |
RATIO | Ratio | 5100 |
TAUX | Taux | 380 |
FREQ
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
T | NA | 20219 |
A | Annual | 76 |
UNIT_MEASURE
Code
`CNT-2020-PIB-EQB-RF` %>%
group_by(UNIT_MEASURE) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
UNIT_MEASURE | Nobs |
---|---|
EUROS | 14634 |
POURCENT | 380 |
SO | 5281 |
CNA_PRODUIT
Code
`CNT-2020-PIB-EQB-RF` %>%
left_join(CNA_PRODUIT, by = "CNA_PRODUIT") %>%
group_by(CNA_PRODUIT, Cna_produit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
CNA_PRODUIT | Cna_produit | Nobs |
---|---|---|
D-CNT | Ensemble des biens et services | 11889 |
SO | Sans objet | 8406 |
TIME_PERIOD
Code
`CNT-2020-PIB-EQB-RF` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Last - 2022-Q1
Tous
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(TIME_PERIOD == "2022-Q1") %>%
select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
arrange(-OBS_VALUE) %>%
print_table_conditional
% du PIB
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION == "2022-Q1") %>%
TIME_PERIOD select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
arrange(-OBS_VALUE) %>%
mutate(`% of GDP` = round(100*OBS_VALUE/OBS_VALUE[OPERATION == "PIB"], 1)) %>%
print_table_conditional
SECT-INST | OPERATION | CNA_PRODUIT | TITLE_FR | OBS_VALUE | OBS_REV | % of GDP |
---|---|---|---|---|---|---|
SO | DINTF | SO | Demande intérieure totale finale - Valeur aux prix courants - Série CVS-CJO | 660969 | 1 | 101.7 |
SO | DINTFHS | SO | Demande intérieure totale finale hors stocks - Valeur aux prix courants - Série CVS-CJO | 658000 | 1 | 101.3 |
SO | PIB | SO | Produit intérieur brut total - Valeur aux prix courants - Série CVS-CJO | 649711 | 1 | 100.0 |
SO | P4 | D-CNT | Dépenses de consommation totales - Valeur aux prix courants - Série CVS-CJO | 506365 | 1 | 77.9 |
S14 | P3 | D-CNT | Dépenses de consommation des ménages - Total - Valeur aux prix courants - Série CVS-CJO | 330864 | 1 | 50.9 |
SO | P7 | D-CNT | Importations - Total - Valeur aux prix courants - Série CVS-CJO | 239881 | 1 | 36.9 |
SO | P6 | D-CNT | Exportations - Total - Valeur aux prix courants - Série CVS-CJO | 228623 | 1 | 35.2 |
SO | P3 | SO | Dépenses de consommation des APU - Total - Valeur aux prix courants - Série CVS-CJO | 160642 | 1 | 24.7 |
S0 | P51 | D-CNT | FBCF de l'ensemble des secteurs institutionnels - Total - Valeur aux prix courants - Série CVS-CJO | 151635 | 1 | 23.3 |
SO | P31 | D-CNT | Dépenses de consommation individualisable des APU - Total - Valeur aux prix courants - Série CVS-CJO | 104731 | 1 | 16.1 |
S11 | P51S | D-CNT | Investissement des entreprises non financières - Total - Valeur aux prix courants - Série CVS-CJO | 79597 | 1 | 12.3 |
SO | P32 | D-CNT | Dépenses de consommation collective des APU - Total - Valeur aux prix courants - Série CVS-CJO | 55911 | 1 | 8.6 |
SO | D211 | D-CNT | TVA - Total - Valeur aux prix courants - Série CVS-CJO | 48448 | 1 | 7.5 |
S14 | P51M | D-CNT | FBCF des ménages - Total - Valeur aux prix courants - Série CVS-CJO | 37662 | 1 | 5.8 |
SO | D214 | D-CNT | Autres impôts sur les produits - Total - Valeur aux prix courants - Série CVS-CJO | 29847 | 1 | 4.6 |
S13 | P51G | D-CNT | FBCF des administrations publiques - Total - Valeur aux prix courants - Série CVS-CJO | 26566 | NA | 4.1 |
S15 | P3 | D-CNT | Dépenses de consommation des ISBLSM - Total - Valeur aux prix courants - Série CVS-CJO | 14859 | NA | 2.3 |
S12 | P51B | D-CNT | FBCF des sociétés financières - Total - Valeur aux prix courants - Série CVS-CJO | 6437 | 1 | 1.0 |
SO | P54 | D-CNT | Stocks et acquisitions moins cessions d'objets de valeur - Total - Valeur aux prix courants - Série CVS-CJO | 2968 | 1 | 0.5 |
SO | P52 | D-CNT | Variation des stocks - Total - Valeur aux prix courants - Série CVS-CJO | 2712 | 1 | 0.4 |
S15 | P51P | D-CNT | FBCF des ISBLSM - Total - Valeur aux prix courants - Série CVS-CJO | 1373 | NA | 0.2 |
SO | D212 | D-CNT | Impôts sur importations - Total - Valeur aux prix courants - Série CVS-CJO | 683 | NA | 0.1 |
SO | P53 | D-CNT | Acquisitions moins cessions d'objets de valeur - Total - Valeur aux prix courants - Série CVS-CJO | 256 | NA | 0.0 |
SO | D319 | D-CNT | Subventions - Total - Valeur aux prix courants - Série CVS-CJO | -5896 | NA | -0.9 |
SO | SOLDE | SO | Solde extérieur total - Valeur aux prix courants - Série CVS-CJO | -11258 | 1 | -1.7 |
Deflators
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
1999-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(OBS_VALUE = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(variable) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE , color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())+
geom_label_repel(data = . %>%
filter(date == max(date)), aes(date, y = OBS_VALUE, label = round(OBS_VALUE, 1),color = variable))
2014-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(OBS_VALUE = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2014-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
group_by(variable) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE , color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2019-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2019-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2017T2-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(OBS_VALUE = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
filter(date >= as.Date("2017-04-01")) %>%
group_by(variable) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE , color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1999, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())+
geom_label_repel(data = . %>%
filter(date == max(date)), aes(date, y = OBS_VALUE, label = round(OBS_VALUE, 1),color = variable))
2019T4-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(OBS_VALUE = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
filter(date >= as.Date("2019-10-01")) %>%
group_by(variable) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE , color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1999, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())+
geom_label_repel(data = . %>%
filter(date == max(date)), aes(date, y = OBS_VALUE, label = round(OBS_VALUE, 1),color = variable))
2020-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2020-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
2021-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P4"),
%in% c("V", "L"),
VALORISATION == "VALEUR_ABSOLUE") %>%
NATURE select_if(~ n_distinct(.) > 1) %>%
select(-IDBANK, -TITLE_EN) %>%
rowwise() %>%
mutate(date = TIME_PERIOD_to_date(TIME_PERIOD)) %>%
arrange(desc(date)) %>%
group_by(OPERATION, `SECT-INST`, date) %>%
summarise(deflator = 100*OBS_VALUE[VALORISATION == "V"]/OBS_VALUE[VALORISATION == "L"]) %>%
%>%
ungroup left_join(OPERATION, by = "OPERATION") %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
filter(date >= as.Date("2021-01-01")) %>%
mutate(variable = paste0(OPERATION, " - ", `Sect-Inst`)) %>%
group_by(OPERATION, `SECT-INST`) %>%
mutate(deflator = 100*deflator/deflator[1]) %>%
+ geom_line(aes(x = date, y = deflator, color = variable)) +
ggplot theme_minimal() + xlab("") + ylab("") +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10() +
theme(legend.position = c(0.5, 0.8),
legend.title = element_blank())
Agrégats
consommation nominale
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P3", "PIB")) %>%
OPERATION %>%
quarter_to_date filter(date >= as.Date("2021-10-01")) %>%
group_by(OPERATION, `SECT-INST`) %>%
arrange(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[1]) %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
Consommation: P4, P3
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
2000-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P4", "P3", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.4),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 5),
labels = percent_format(accuracy = 1))
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P31", "P32", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 1),
labels = percent_format(accuracy = 1))
Exports, Imports
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P6", "P7", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
Solde Extérieur
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("SOLDE", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
%>%
na.omit filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 1),
labels = percent_format(accuracy = 1))
Investissement
All
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = paste(OPERATION, "-", TITLE_FR))) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.78),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1980-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
1995-
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(FREQ == "T",
== "V",
VALORISATION %in% c("P51", "P51B", "P51G", "P51M", "P51P", "P51S", "PIB")) %>%
OPERATION %>%
quarter_to_date group_by(date) %>%
mutate(OBS_VALUE = OBS_VALUE/OBS_VALUE[OPERATION == "PIB"]) %>%
filter(OPERATION != "PIB") %>%
mutate(TITLE_FR = gsub("- Valeur aux prix courants - Série CVS-CJO", "", TITLE_FR)) %>%
filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("% du PIB") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
#
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 300, 2),
labels = percent_format(accuracy = 1))
GDP Updates
gdp_quarterly2
Code
<- `CNT-2020-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
mutate(date = date + months(3) - days(1)) %>%
select(date, gdp = OBS_VALUE) %>%
mutate(gdp = gdp/1000)
save(gdp_quarterly, file = "gdp_quarterly2.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2024-03-31 | 723.441 |
2024-06-30 | 726.514 |
2024-09-30 | 736.111 |
2024-12-31 | 738.818 |
2025-03-31 | 742.225 |
gdp_quarterly3
Code
<- `CNT-2020-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
select(date, gdp = OBS_VALUE) %>%
mutate(gdp = gdp/1000)
save(gdp_quarterly, file = "gdp_quarterly3.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2024-01-01 | 723.441 |
2024-04-01 | 726.514 |
2024-07-01 | 736.111 |
2024-10-01 | 738.818 |
2025-01-01 | 742.225 |
gdp_quarterly4: IDBANK 010565707
Code
<- `CNT-2020-PIB-EQB-RF` %>%
gdp_quarterly filter(OPERATION == "PIB",
== "T",
FREQ == "V") %>%
VALORISATION %>%
quarter_to_date arrange(date) %>%
select(date, gdp = OBS_VALUE)
save(gdp_quarterly, file = "gdp_quarterly4.RData")
%>%
gdp_quarterly tail(5) %>%
print_table_conditional()
date | gdp |
---|---|
2024-01-01 | 723441 |
2024-04-01 | 726514 |
2024-07-01 | 736111 |
2024-10-01 | 738818 |
2025-01-01 | 742225 |
Depuis le Covid-19
PIB valeur
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2019 Q4")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2019 Q4")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
PIB volume
2019-Q4
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2019 Q4")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2019 Q4")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Demande, Demande hors stocks
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "DINTF", "DINTFHS"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2019 Q4")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2019 Q4")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2017-Q2 -
PIB valeur
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2017 Q2")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2017 Q2")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
PIB volume
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2017 Q2")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2017 Q2")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 5)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
Demande, Demande hors stocks
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "DINTF", "DINTFHS"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2017 Q2")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2017 Q2")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2017:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = seq(0, 200, 2)) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
2011-Q1
PIB valeur
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2011 Q1")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2011 Q1")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2011:2100, c(2, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = c(seq(0, 170, 5), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
PIB volume
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2010-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 180, 5), 106, 107)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
2010-2014
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
filter(date <= as.Date("2014-01-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2010-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(100, 180, 1), 106, 107)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
2011-2014
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2011-01-01")) %>%
filter(date <= as.Date("2014-01-01")) %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2011-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(100, 180, 1), 106, 107)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
2011-14
PIB valeur
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "V",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
%>%
quarter_to_date filter(date >= as.Date("2011-01-01"),
<= as.Date("2014-01-01")) %>%
date select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2011-01-01")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
scale_x_date(breaks = "1 year",
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 170, 1), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank())
PIB volume
Code
`CNT-2020-PIB-EQB-RF` %>%
filter(OPERATION %in% c("PIB", "P3", "P31", "P32", "P4"),
== "T",
FREQ == "L",
VALORISATION == "VALEUR_ABSOLUE",
NATURE `SECT-INST` == "SO") %>%
left_join(OPERATION, by = "OPERATION") %>%
mutate(date = zoo::as.yearqtr(TIME_PERIOD, format = "%Y-Q%q")) %>%
filter(date >= zoo::as.yearqtr("2011 Q1"),
<= zoo::as.yearqtr("2014 Q1")) %>%
date select_if(~ n_distinct(.) > 1) %>%
arrange(date) %>%
group_by(OPERATION) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == zoo::as.yearqtr("2011 Q1")]) %>%
+ geom_line(aes(x = date, y = OBS_VALUE, color = Operation)) +
ggplot xlab("") + ylab("") + theme_minimal() +
::scale_x_yearqtr(labels = date_format("%YT%q"),
zoobreaks = expand.grid(2011:2100, c(1, 2, 3, 4)) %>%
mutate(breaks = zoo::as.yearqtr(paste0(Var1, "Q", Var2))) %>%
pull(breaks)) +
scale_y_log10(breaks = c(seq(0, 170, 1), 106, 107, 111, 112, 113)) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))