source | dataset | .html | .RData |
---|---|---|---|
eurostat | gov_10dd_edpt1 | 2024-11-22 | 2024-11-22 |
Quarterly government debt
Data - Eurostat
Info
LAST_DOWNLOAD
source | dataset | .html | .RData |
---|---|---|---|
eurostat | ei_mfir_m | 2024-11-23 | 2024-11-22 |
eurostat | gov_10q_ggdebt | 2024-11-22 | 2024-11-22 |
fred | r | 2024-11-22 | 2024-11-22 |
fred | saving | 2024-11-22 | 2024-11-22 |
gfd | debt | 2021-08-22 | 2021-03-01 |
imf | FM | 2024-06-20 | 2020-03-13 |
imf | GGXCNL_G01_GDP_PT | 2024-11-22 | 2024-11-22 |
imf | GGXONLB_G01_GDP_PT | 2024-11-22 | 2024-11-22 |
imf | GGXWDN_G01_GDP_PT | 2024-10-29 | 2024-05-06 |
imf | HPDD | 2024-06-20 | NA |
oecd | QASA_TABLE7PSD | 2024-09-15 | 2024-11-22 |
wdi | GC.DOD.TOTL.GD.ZS | 2023-06-18 | 2024-09-18 |
wdi | GC.XPN.INTP.CN | 2023-06-18 | 2024-09-18 |
wdi | GC.XPN.INTP.RV.ZS | 2023-06-18 | 2024-09-18 |
wdi | GC.XPN.INTP.ZS | 2024-09-18 | 2024-09-18 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-23 |
Last
Code
%>%
gov_10dd_edpt1 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 2103 |
unit
Code
%>%
gov_10dd_edpt1 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
MIO_EUR | Million euro | 16514 |
MIO_NAC | Million units of national currency | 16514 |
PC_GDP | Percentage of gross domestic product (GDP) | 16514 |
sector
Code
%>%
gov_10dd_edpt1 left_join(sector, by = "sector") %>%
group_by(sector, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sector | Sector | Nobs |
---|---|---|
S13 | General government | 33297 |
S1 | Total economy | 3906 |
S1311 | Central government | 3879 |
S1313 | Local government | 3858 |
S1314 | Social security funds | 3759 |
S1312 | State government | 843 |
na_item
Code
%>%
gov_10dd_edpt1 left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
geo
Code
%>%
gov_10dd_edpt1 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
time
Code
%>%
gov_10dd_edpt1 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 2103 |
2022 | 2103 |
2021 | 2103 |
2020 | 2103 |
2019 | 1836 |
2018 | 1839 |
2017 | 1836 |
2016 | 1836 |
2015 | 1836 |
2014 | 1836 |
2013 | 1836 |
2012 | 1833 |
2011 | 1833 |
2010 | 1833 |
2009 | 1830 |
2008 | 1557 |
2007 | 1557 |
2006 | 1554 |
2005 | 1554 |
2004 | 1554 |
2003 | 1548 |
2002 | 1548 |
2001 | 1539 |
2000 | 1536 |
1999 | 1413 |
1998 | 1413 |
1997 | 1413 |
1996 | 1380 |
1995 | 1380 |
EA-19
Debt
Code
%>%
gov_10dd_edpt1 filter(time %in% c("2022", "2021"),
== "S13",
sector == "PC_GDP",
unit == "GD") %>%
na_item select(geo, time, values) %>%
spread(time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, Geo, geo, everything()) %>%
arrange(-`2022`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Deficit
Code
%>%
gov_10dd_edpt1 filter(time %in% c("2022", "2021"),
== "S13",
sector == "PC_GDP",
unit == "B9") %>%
na_item select(geo, time, values) %>%
spread(time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, Geo, geo, everything()) %>%
arrange(-`2022`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Last
Debt
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD") %>%
na_item group_by(geo) %>%
filter(time == max(time)) %>%
left_join(geo, by = "geo") %>%
select_if(~ n_distinct(.) > 1) %>%
arrange(values) %>%
select(geo, Geo, everything()) %>%
print_table_conditional()
geo | Geo | values |
---|---|---|
EE | Estonia | 20.2 |
BG | Bulgaria | 22.9 |
LU | Luxembourg | 25.5 |
SE | Sweden | 31.5 |
DK | Denmark | 33.6 |
LT | Lithuania | 37.3 |
CZ | Czechia | 42.4 |
IE | Ireland | 43.3 |
LV | Latvia | 45.0 |
NL | Netherlands | 45.1 |
MT | Malta | 47.4 |
RO | Romania | 48.9 |
PL | Poland | 49.7 |
SK | Slovakia | 56.1 |
HR | Croatia | 61.8 |
DE | Germany | 62.9 |
SI | Slovenia | 68.4 |
HU | Hungary | 73.4 |
CY | Cyprus | 73.6 |
FI | Finland | 77.1 |
AT | Austria | 78.6 |
EU27_2020 | European Union - 27 countries (from 2020) | 80.8 |
EA20 | Euro area – 20 countries (from 2023) | 87.4 |
EA19 | Euro area - 19 countries (2015-2022) | 87.5 |
PT | Portugal | 97.9 |
BE | Belgium | 103.1 |
ES | Spain | 105.1 |
FR | France | 109.9 |
IT | Italy | 134.8 |
EL | Greece | 163.9 |
Luxembourg, Denmark, Sweden, Netherlands, Germany, France
Debt
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD",
na_item %in% c("NL", "LU", "DK", "SE", "FR")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Public debt (years of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 260, 20),
labels = scales::dollar_format(acc = .1, pre = "", su = " y")) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Deficit
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "B9",
na_item %in% c("NL", "LU", "DK", "SE", "FR")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
France, Germany, Italy, Spain, Netherlands
Debt
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD",
na_item %in% c("FR", "DE", "IT", "ES", "NL")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Public debt (years of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 260, 20),
labels = scales::dollar_format(acc = .1, pre = "", su = " y")) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Deficit
All
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "B9",
na_item %in% c("FR", "DE", "IT", "ES", "NL")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 2), "-01-01")),
labels = date_format("%Y"))
2010-
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "B9",
na_item %in% c("FR", "DE", "IT", "ES", "NL")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
filter(date >= as.Date("2010-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 1), "-01-01")),
labels = date_format("%Y"))
Interest payments
All
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "D41PAY",
na_item %in% c("FR", "DE", "IT", "ES", "NL", "EA19")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
2005-
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "D41PAY",
na_item %in% c("FR", "DE", "IT", "ES", "NL", "EA19")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2005-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Interest payments (% of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(2005, 2100, 2), "-01-01")),
labels = date_format("%Y"))
France, Europe
2005-
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "D41PAY",
na_item %in% c("FR", "EA19")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2005-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Interest payments (% of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_2flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, .1),
labels = scales::percent_format(acc = .1)) +
scale_x_date(breaks = as.Date(paste0(seq(2005, 2100, 2), "-01-01")),
labels = date_format("%Y"))
France, Portugal, Greece, EUrope
2005-
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "D41PAY",
na_item %in% c("FR", "EA19", "EL", "PT")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2005-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Interest payments (% of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_4flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, .5),
labels = scales::percent_format(acc = .1)) +
scale_x_date(breaks = as.Date(paste0(seq(2005, 2100, 2), "-01-01")),
labels = date_format("%Y"))
Italy, Portugal, Spain, Greece, Belgium, France
All
Debt
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD",
na_item %in% c("IT", "PT", "ES", "EL", "BE", "FR")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Public debt (years of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 260, 20),
labels = scales::dollar_format(acc = .1, pre = "", su = " y")) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Deficit
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "B9",
na_item %in% c("IT", "PT", "ES", "EL", "BE", "FR")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values / 100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_6flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
labels = scales::percent_format(acc = 1)) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 5), "-01-01")),
labels = date_format("%Y"))
Debt
Years of GDP
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD",
na_item %in% c("IT", "PT", "ES", "EL", "BE", "FR", "EA19")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Public debt (years of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_7flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 260, 20),
labels = scales::dollar_format(acc = .1, pre = "", su = " y")) +
scale_x_date(breaks = as.Date(paste0(seq(2015, 2100, 1), "-01-01")),
labels = date_format("%Y"))
% of GDP…
Code
%>%
gov_10dd_edpt1 filter(sector == "S13",
== "PC_GDP",
unit == "GD",
na_item %in% c("IT", "PT", "ES", "EL", "BE", "FR", "EA19")) %>%
geo left_join(geo, by = "geo") %>%
year_to_date() %>%
mutate(values = values / 100,
Geo = ifelse(geo == "EA19", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Public debt (% of GDP)") +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_7flags +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 260, 20),
labels = scales::percent_format()) +
scale_x_date(breaks = as.Date(paste0(seq(2015, 2100, 1), "-01-01")),
labels = date_format("%Y"))