European Union and euro area balance of payments - quarterly data (BPM6)
Data - Eurostat
Info
Data on europe
Code
load_data("europe.RData")
europe %>%
source_dataset_file_updates()| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | bop_gdp6_q | Main Balance of Payments and International Investment Position items as share of GDP (BPM6) | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_a10 | Gross value added and income by A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_a10_e | Employment by A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_gdp | GDP and main components (output, expenditure and income) | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_a10 | Gross value added and income A*10 industry breakdowns | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_a10_e | Employment A*10 industry breakdowns | 2025-05-24 | 2026-01-29 |
| eurostat | namq_10_gdp | GDP and main components (output, expenditure and income) | 2025-10-27 | 2026-01-29 |
| eurostat | namq_10_lp_ulc | Labour productivity and unit labour costs | 2026-01-29 | 2026-01-29 |
| eurostat | namq_10_pc | Main GDP aggregates per capita | 2026-01-29 | 2026-01-29 |
| eurostat | nasa_10_nf_tr | Non-financial transactions | 2026-01-29 | 2026-01-29 |
| eurostat | nasq_10_nf_tr | Non-financial transactions | 2026-01-29 | 2026-01-29 |
| eurostat | tipsii40 | Net international investment position - quarterly data, % of GDP | 2026-01-29 | 2026-01-29 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-31 |
Last
Code
bop_eu6_q %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025Q3 | 6887 |
Info
currency
Code
bop_eu6_q %>%
left_join(currency, by = "currency") %>%
group_by(currency, Currency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| currency | Currency | Nobs |
|---|---|---|
| MIO_EUR | Million euro | 890488 |
s_adj
Code
bop_eu6_q %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| s_adj | S_adj | Nobs |
|---|---|---|
| NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 881857 |
| SCA | Seasonally and calendar adjusted data | 8631 |
bop_item
Code
bop_eu6_q %>%
left_join(bop_item, by = "bop_item") %>%
group_by(bop_item, Bop_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()sector10
Code
bop_eu6_q %>%
left_join(sector10, by = "sector10") %>%
group_by(sector10, Sector10) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| sector10 | Sector10 | Nobs |
|---|---|---|
| S1 | Total economy | 586766 |
| S13 | General Government | 59168 |
| S1W | Other sectors than General Government | 42828 |
| S121 | Central Bank | 33116 |
| S12T | Monetary Financial Institutions (MFI) other than central bank | 28306 |
| S1P | Other sectors than MFIs and general government | 26853 |
| S12M | Financial corporations other than MFIs | 24530 |
| S1V | Non-financial corporations, households and non-profit institutions serving households | 23974 |
| S122 | Deposit-taking corporations except the central bank | 23560 |
| S123 | Money market funds | 19102 |
| S12Q | Insurance corporations and pension funds | 4536 |
| S11 | Non-financial corporations | 4410 |
| S12O | Other financial institutions | 4410 |
| S12K | Monetary financial institutions (MFI) | 3133 |
| S124 | Non-MMF investment funds | 3087 |
| S1M | Households and non-profit institutions serving households | 2709 |
sectpart
Code
bop_eu6_q %>%
left_join(sectpart, by = "sectpart") %>%
group_by(sectpart, Sectpart) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| sectpart | Sectpart | Nobs |
|---|---|---|
| S1 | Total economy | 882216 |
| S1P | Other sectors than MFIs and general government | 1213 |
| S123 | Money market funds | 1162 |
| S12M | Financial corporations other than MFIs | 1135 |
| S12T | Monetary Financial Institutions (MFI) other than central bank | 1076 |
| S122 | Deposit-taking corporations except the central bank | 830 |
| S1N | Not sectorised | 727 |
| S1V | Non-financial corporations, households and non-profit institutions serving households | 666 |
| S121 | Central Bank | 607 |
| S13 | General Government | 607 |
| S12K | Monetary financial institutions (MFI) | 249 |
stk_flow
Code
bop_eu6_q %>%
left_join(stk_flow, by = "stk_flow") %>%
group_by(stk_flow, Stk_flow) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| stk_flow | Stk_flow | Nobs |
|---|---|---|
| CRE | Credit | 208944 |
| DEB | Debit | 183846 |
| BAL | Balance | 163054 |
| ASS | Assets | 142526 |
| LIAB | Liabilities | 99909 |
| NET | Net | 91987 |
| NI | Net FDI inward | 111 |
| NO | Net FDI outward | 111 |
partner
Code
bop_eu6_q %>%
left_join(partner, by = "partner") %>%
group_by(partner, Partner) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Partner = ifelse(partner == "DE", "Germany", Partner)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Partner)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}geo
Code
bop_eu6_q %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}