Disaggregated final energy consumption in industry - quantities by NACE Rev. 2 activity

Data - Eurostat

Info

source dataset .html .RData
eurostat nrg_d_indq_n 2024-11-01 2024-10-08

Data on energy

source dataset .html .RData
ec WOB 2024-09-15 2024-08-25
eurostat ei_isen_m 2024-11-05 2024-10-09
eurostat nrg_bal_c 2023-12-31 2024-10-08
eurostat nrg_pc_202 2024-11-01 2024-10-08
eurostat nrg_pc_203 2023-06-11 2024-10-08
eurostat nrg_pc_203_c 2024-11-01 2024-10-08
eurostat nrg_pc_203_h 2024-11-01 2024-11-05
eurostat nrg_pc_203_v 2024-11-01 2024-10-08
eurostat nrg_pc_204 2024-11-01 2024-11-05
eurostat nrg_pc_205 2023-06-11 2024-10-08
fred energy 2024-11-01 2024-11-01
iea world_energy_balances_highlights_2022 2024-06-20 2023-04-24
wb CMO 2024-06-20 2024-05-23
wdi EG.GDP.PUSE.KO.PP.KD 2024-09-18 2024-09-18
wdi EG.USE.PCAP.KG.OE 2024-09-18 2024-09-18
yahoo energy 2024-11-05 2024-11-05

LAST_COMPILE

LAST_COMPILE
2024-11-05

Last

Code
nrg_d_indq_n %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2022 144861

Info

  • Final energy consumption in industry - detailed statistics html
Code
include_graphics("https://ec.europa.eu/eurostat/statistics-explained/images/5/55/Final_energy_consumption_in_the_chemical_and_petrochemical_industry_by_energy_product%2C_EU%2C_2021_%28PJ%29.png")

siec

Code
nrg_d_indq_n %>%
  left_join(siec, by = "siec") %>%
  group_by(siec, Siec) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

nace_r2

Code
nrg_d_indq_n %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

unit

Code
nrg_d_indq_n %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
unit Unit Nobs
TJ_NCV Terajoule (net calorific value - NCV) 334736
THS_T Thousand tonnes 235775
TJ_GCV Terajoule (gross calorific value - GCV) 56660
GWH Gigawatt-hour 8629

geo

Code
nrg_d_indq_n %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
nrg_d_indq_n %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2022 144861
2021 144510
2020 122655
2019 75268
2018 74278
2017 74228