| source | dataset | .html | .RData |
|---|---|---|---|
| oecd | NRR | 2024-04-15 | 2024-04-08 |
| source | dataset | .html | .RData |
|---|---|---|---|
| bls | jt | 2024-03-20 | NA |
| bls | la | 2024-01-06 | NA |
| bls | ln | 2024-01-06 | NA |
| eurostat | nama_10_a10_e | 2024-04-15 | 2024-04-09 |
| eurostat | nama_10_a64_e | 2024-04-15 | 2024-04-15 |
| eurostat | namq_10_a10_e | 2024-04-15 | 2024-04-15 |
| eurostat | une_rt_m | 2024-04-15 | 2024-04-09 |
| oecd | ALFS_EMP | 2024-04-16 | 2024-01-26 |
| oecd | EPL_T | 2024-04-16 | 2023-12-10 |
| oecd | LFS_SEXAGE_I_R | 2024-04-16 | 2024-04-15 |
| oecd | STLABOUR | 2024-04-15 | 2024-04-15 |
| obsTime | Nobs |
|---|---|
| 2023 | 199680 |
| id | description |
|---|---|
| LOCATION | Country |
| FAMILY | Family type |
| DURATION | Unemployment duration (months) |
| EARNINGS | Previous in-work earnings |
| HBTOPUPS | Include housing benefits |
| TIME | Year |
| OBS_VALUE | Observation Value |
| TIME_FORMAT | Time Format |
| OBS_STATUS | Observation Status |
| id | label |
|---|---|
| SINGLE | Single person without children |
| SINGLE2C | Single person with 2 children |
| 1EARNERC | Couple without children - partner is out of work |
| 1EARNERC2C | Couple with 2 children - partner is out of work |
| 2EARNERC_AW | Couple without children - partner’s earnings: Average Wage (AW) |
| 2EARNERC_67AW | Couple without children - partner’s earnings: 67% of the AW |
| 2EARNERC2C_AW | Couple with 2 children - partner’s earnings: AW |
| 2EARNERC2C_67AW | Couple with 2 children - partner’s earnings: 67% of the AW |
| id | label |
|---|---|
| MIN | Minimum Wage |
| 67AW | 67% of the Average Wage |
| AW | Average Wage |
NRR %>%
filter(LOCATION == "DEU",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.45, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "FRA",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "ITA",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "ESP",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "GBR",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "USA",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "CHE",
FAMILY == "SINGLE",
EARNINGS == "AW",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "DEU",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.45, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "FRA",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "ITA",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "ESP",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "GBR",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "USA",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))
NRR %>%
filter(LOCATION == "CHE",
FAMILY == "SINGLE",
EARNINGS == "MIN",
HBTOPUPS == 1,
obsTime %in% c("2001", "2005", "2018")) %>%
mutate(DURATION = DURATION %>% as.numeric,
obsValue = obsValue / 100) %>%
arrange(obsTime, DURATION) %>%
select(obsTime, DURATION, obsValue) %>%
ggplot() + theme_minimal() +
geom_line(aes(x = DURATION, y = obsValue, color = obsTime, linetype = obsTime)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.85, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Net Replacement Rate") +
scale_x_continuous(breaks = seq(0, 60, 6),
labels = dollar_format(prefix = "", suffix = " mo")) +
scale_y_continuous(breaks = seq(0, 1, 0.1),
labels = percent_format(accuracy = 1),
limits = c(0, 1))