source | dataset | .html | .RData |
---|---|---|---|
eurostat | nasq_10_ki | 2024-11-01 | 2024-10-31 |
Key indicators and growth rates of selected transactions
Data - Eurostat
Info
Data on saving
Example
LAST_DOWNLOAD
Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/nasq_10_ki.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2024-10-31 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-05 |
Last
Code
%>%
nasq_10_ki group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024Q2 | 163 |
sector
Code
%>%
nasq_10_ki left_join(sector, by = "sector") %>%
group_by(sector, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
sector | Sector | Nobs |
---|---|---|
S14_S15 | Households; non-profit institutions serving households | 14953 |
S11 | Non-financial corporations | 9293 |
na_item
Code
load_data("eurostat/na_item.RData")
%>%
nasq_10_ki left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
na_item | Na_item | Nobs |
---|---|---|
B2G_B3G_RAT_S11 | Gross profit share of non-financial corporations (B2G_B3G/B1Q*100) | 4685 |
IRG_S11 | Gross investment rate of non-financial corporations (P51/B1G*100) | 4608 |
SRG_S14_S15 | Gross household saving rate (B8G/(B6G+D8Net)*100) | 4161 |
IRG_S14_S15 | Gross investment rate of households (P51/(B6G+D8Net)*100) | 4112 |
B6G_R_HAB_2010 | Gross disposable income of households in real terms per capita (2010=100) | 1908 |
B6G_R_HAB_GR | Gross disposable income of households in real terms per capita (percentage change on previous period) | 1890 |
NFW_S14_S15 | Household net financial assets ratio (BF90/(B6G+D8net)) | 1851 |
B7G_R_HAB_2010 | Adjusted gross disposable income of households in real terms per capita (2010=100) | 315 |
B7G_R_HAB_GR | Adjusted gross disposable income of households in real terms per capita (percentage change on previous period) | 312 |
B7G_N_HAB_GR | Adjusted gross disposable income of households in nominal terms per capita (percentage change on previous period) | 202 |
P4_R_HAB_GR | Actual final consumption in real terms per capita (percentage change on previous period) | 202 |
geo
Code
%>%
nasq_10_ki left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmasll/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Adjusted gross disposable income of households in real terms per capita (2010=100) - B7G
France, Germany, Spain, Italy, Europe
All
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B7G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
1999-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B7G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
2010-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B7G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
Gross disposable income of households in real terms per capita (2010=100) - B6G
France, Germany, Spain, Italy, Europe
All
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B6G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
1999-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B6G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(geo, by = "geo") %>%
group_by(geo) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1999, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
2010-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "B6G_R_HAB_2010",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date filter(date >= as.Date("2010-01-01")) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
Gross household saving rate (B8G/(B6G+D8Net)*100)
France, Germany, Spain, Italy, Europe
All
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "SRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = percent_format(a = 1))
1999-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "SRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
2015-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "SRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2019-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "SRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2019-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = seq.Date(from = as.Date("2018-01-01"), to = as.Date("2024-01-01"), by = "6 months"),
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Gross investment rate of households (P51/(B6G+D8Net)*100)
France, Germany, Spain, Italy, Europe
All
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
1999-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
France, Germany, Eurozone
2015-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "EA20"),
== "IRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("Gross investment rate of households") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, .5),
labels = percent_format(a = .1),)
2019-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S14_S15",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2019-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = seq.Date(from = as.Date("2018-01-01"), to = as.Date("2024-01-01"), by = "3 months"),
labels = date_format("%b %Y")) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Gross investment rate of non-financial corporations (P51/B1G*100)
France, Germany, Spain, Italy, Europe
All
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S11",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = percent_format(a = 1))
1999-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S11",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1999-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2100, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = percent_format(a = 1))
2015-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S11",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2015-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2025, 1), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
2019-
Code
%>%
nasq_10_ki filter(geo %in% c("FR", "DE", "IT", "ES", "EA20"),
== "IRG_S11",
na_item == "SCA") %>%
s_adj %>%
quarter_to_date mutate(values = values/100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("2019-01-01")) %>%
+ theme_minimal() + xlab("") + ylab("") +
ggplot geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = seq.Date(from = as.Date("2018-01-01"), to = as.Date("2024-01-01"), by = "6 months"),
labels = date_format("%b %Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))