Salaires annuels
Data - INSEE
Info
Données sur les salaires
source | dataset | .html | .RData |
---|---|---|---|
dares | les-indices-de-salaire-de-base | 2024-11-04 | 2024-09-21 |
insee | CNA-2014-RDB | 2024-11-05 | 2024-11-05 |
insee | CNT-2014-CSI | 2024-11-05 | 2024-11-05 |
insee | ECRT2023 | 2024-11-05 | 2023-06-30 |
insee | if230 | 2024-11-05 | 2021-12-04 |
insee | INDICE-TRAITEMENT-FP | 2024-11-05 | 2024-11-05 |
insee | ir_salaires_SL_23_csv | 2024-11-05 | NA |
insee | ir_salaires_SL_csv | 2024-11-05 | NA |
insee | SALAIRES-ACEMO | 2024-11-05 | 2024-11-05 |
insee | SALAIRES-ACEMO-2017 | 2024-11-05 | 2024-11-05 |
insee | SALAIRES-ANNUELS | 2024-10-29 | 2024-11-05 |
insee | t_7401 | 2024-10-18 | 2024-10-18 |
insee | t_salaire_val | 2024-11-03 | 2024-09-02 |
LAST_UPDATE
Code
`SALAIRES-ANNUELS` %>%
group_by(LAST_UPDATE) %>%
summarise(Nobs = n()) %>%
arrange(desc(LAST_UPDATE)) %>%
print_table_conditional()
LAST_UPDATE | Nobs |
---|---|
2024-11-05 | 4750 |
2024-01-08 | 61 |
2017-11-07 | 3981 |
2013-06-24 | 555 |
LAST_COMPILE
LAST_COMPILE |
---|
2024-11-05 |
Last
Head
Code
`SALAIRES-ANNUELS` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(3) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
2023 | 116 |
2022 | 116 |
2021 | 116 |
Last
Code
`SALAIRES-ANNUELS` %>%
filter(TIME_PERIOD == max(TIME_PERIOD)) %>%
head(200) %>%
select(TITLE_FR, TIME_PERIOD, OBS_VALUE) %>%
print_table_conditional
First
Code
`SALAIRES-ANNUELS` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
tail(1) %>%
print_table_conditional()
TIME_PERIOD | Nobs |
---|---|
1950 | 50 |
TITLE_FR
Tous
Code
`SALAIRES-ANNUELS` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n(),
date1 = first(TIME_PERIOD),
date2 = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
print_table_conditional()
Ensemble
Code
`SALAIRES-ANNUELS` %>%
filter(SEXE == "0") %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n(),
date1 = first(TIME_PERIOD),
date2 = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
print_table_conditional()
SEXE
Code
`SALAIRES-ANNUELS` %>%
left_join(SEXE, by = "SEXE") %>%
group_by(SEXE, Sexe) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SEXE | Sexe | Nobs |
---|---|---|
0 | Ensemble | 3401 |
1 | Hommes | 2988 |
2 | Femmes | 2958 |
BASIND
Code
`SALAIRES-ANNUELS` %>%
left_join(BASIND, by = "BASIND") %>%
group_by(BASIND, Basind) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
BASIND | Basind | Nobs |
---|---|---|
SO | Sans objet | 8581 |
1951 | 1951 | 414 |
2000 | 2000 | 352 |
VALORISATION
Code
`SALAIRES-ANNUELS` %>%
left_join(VALORISATION, by = "VALORISATION") %>%
group_by(VALORISATION, Valorisation) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALORISATION | Valorisation | Nobs |
---|---|---|
SO | Sans objet | 8995 |
EUROS_CONST | Euros constants | 184 |
EUROS_COUR | Euros courants | 168 |
SERIES_ARRETEE
Code
`SALAIRES-ANNUELS` %>%
left_join(SERIE_ARRETEE, by = "SERIE_ARRETEE") %>%
group_by(SERIE_ARRETEE, Serie_arretee) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SERIE_ARRETEE | Serie_arretee | Nobs |
---|---|---|
FALSE | non | 4811 |
TRUE | oui | 4536 |
METIER
Code
`SALAIRES-ANNUELS` %>%
left_join(METIER, by = "METIER") %>%
group_by(METIER, Metier) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
METIER | Metier | Nobs |
---|---|---|
SO | Sans objet | 7022 |
5 | Employés | 462 |
6 | Ouvriers | 462 |
4 | Professions intermédiaires | 363 |
CCE | Cadres, y compris les chefs d'entreprise salariés | 204 |
3 | Cadres et professions intellectuelles supérieures | 159 |
AS | Apprentis et stagiaires | 159 |
CE | Chefs d'entreprise | 159 |
MOY | Cadres moyens | 99 |
SUP | Cadres supérieurs | 99 |
PSA | Personnel de service | 96 |
CONT | Contremaîtres | 63 |
INDICATEUR
Code
`SALAIRES-ANNUELS` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
INDICATEUR | Indicateur | Nobs |
---|---|---|
SAL_ANN_MOY | Salaire net annuel moyen | 2892 |
SAL_ANN_D5 | Médiane (D5) du salaire net annuel | 567 |
SAL_ANN_D9 | Neuvième décile (D9) du salaire net annuel | 567 |
SAL_ANN_D9-D5 | Rapport interdécile D9/D5 du salaire net annuel | 567 |
SAL_ANN_D1 | Premier décile (D1) du salaire net annuel | 557 |
SAL_ANN_D5-D1 | Rapport interdécile D5/D1 du salaire net annuel | 557 |
SAL_ANN_D9-D1 | Rapport interdécile D9/D1 du salaire net annuel | 557 |
SAL_ANN_PVRACH-EVO | Évolution du pouvoir d'achat du salaire net annuel moyen | 414 |
SAL_ANN_PVRACH-IND | Indice du pouvoir d'achat du salaire net annuel moyen | 414 |
SAL_ANN_SNAM-EVO | Évolution du salaire net annuel moyen | 414 |
SAL_ANN_Q1 | Premier quartile (Q1) du salaire net annuel | 411 |
SAL_ANN_Q3 | Troisième quartile (Q3) du salaire net annuel | 411 |
SAL_ANN_C95 | Quatre-vingt-quinzième centile (C95) du salaire net annuel | 303 |
SAL_ANN_C99 | Quatre-vingt-dix-neuvième centile (C99) du salaire net annuel | 303 |
SAL_ANN_SNMMTC | Indice du salaire net mensuel moyen d'un temps complet | 64 |
SAL_ANN_PLAFSSB | Indice du plafond de la Sécurité sociale (sur les salaires bruts) | 48 |
SAL_ANN_PLAFSSN | Indice du plafond de la Sécurité sociale (sur les salaires nets) | 48 |
SAL_ANN_SHBO | Indice du salaire horaire brut de base des ouvriers (SHBO) | 48 |
SAL_ANN_SMICBH | Indice du SMIC brut horaire | 48 |
SAL_ANN_SMICBM | Indice du SMIC brut mensuel | 48 |
SAL_ANN_SMICNM | Indice du SMIC net mensuel | 48 |
SAL_ANN_SMICH | Montant horaire brut du SMIC | 23 |
SAL_ANN_SMICMB-35H | Montant mensuel brut du SMIC | 19 |
SAL_ANN_SMICMNN-35H | Montant mensuel net du SMIC | 19 |
NATURE
Code
`SALAIRES-ANNUELS` %>%
left_join(NATURE, by = "NATURE") %>%
group_by(NATURE, Nature) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
NATURE | Nature | Nobs |
---|---|---|
VALEUR_ABSOLUE | Valeur absolue | 6072 |
RATIO | Ratio | 1681 |
TAUX | Taux | 828 |
INDICE | Indice | 766 |
QUOTITE-TRAV
Code
`SALAIRES-ANNUELS` %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`QUOTITE-TRAV`, `Quotite-Trav`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
QUOTITE-TRAV | Quotite-Trav | Nobs |
---|---|---|
TC | Temps complet | 3489 |
TCP | Temps complet dans le secteur privé | 3178 |
ETPP | Équivalent temps plein dans le secteur privé | 1260 |
ETP | Équivalent temps plein | 1071 |
SO | Sans objet | 349 |
TIME_PERIOD
Code
`SALAIRES-ANNUELS` %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()
Catégories socioprofessionnelles, séries longues
Salaire net annuel moyen des postes à temps complet
1950-1982
Tous
Code
`SALAIRES-ANNUELS` %>%
group_by(IDBANK, TITLE_FR) %>%
filter(first(TIME_PERIOD) == "1982",
== "0") %>%
SEXE %>%
year_to_date arrange(date) %>%
left_join(METIER, by = "METIER") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = Metier)) +
ggplot theme_minimal() + ylab("") + xlab("")+
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Quelques
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("001665183", "001665186", "001665189", "001665192")) %>%
%>%
year_to_date arrange(date) %>%
left_join(METIER, by = "METIER") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = Metier)) +
ggplot theme_minimal() + ylab("") + xlab("")+
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
1983-
TC
Code
`SALAIRES-ANNUELS` %>%
group_by(IDBANK, TITLE_FR) %>%
filter(SEXE == "0",
`QUOTITE-TRAV` == "TC",
== "SAL_ANN_MOY") %>%
INDICATEUR %>%
year_to_date arrange(date) %>%
left_join(METIER, by = "METIER") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = Metier)) +
ggplot theme_minimal() + ylab("") + xlab("")+
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.6)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
TCP
Code
`SALAIRES-ANNUELS` %>%
group_by(IDBANK, TITLE_FR) %>%
filter(SEXE == "0",
`QUOTITE-TRAV` == "TCP",
== "SAL_ANN_MOY") %>%
INDICATEUR %>%
year_to_date arrange(date) %>%
left_join(METIER, by = "METIER") %>%
+ geom_line(aes(x = date, y = OBS_VALUE/1000, color = Metier)) +
ggplot theme_minimal() + ylab("") + xlab("")+
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.6)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
SAL_ANN_MOY - moyenne
Cadres
1984-
Value
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE")) %>%
METIER left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date arrange(date) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Temps complet
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE"),
METIER grepl(" temps complet", TITLE_FR)) %>%
left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date arrange(date) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Base 100
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE"),
METIER grepl(" temps complet", TITLE_FR)) %>%
left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date arrange(date) %>%
group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.4, 0.95)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
1990-
Value
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE")) %>%
METIER left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Temps complet
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE"),
METIER grepl(" temps complet", TITLE_FR)) %>%
left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Base 100
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE"),
METIER grepl(" temps complet", TITLE_FR)) %>%
left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date filter(date >= as.Date("1990-01-01")) %>%
arrange(date) %>%
group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.4, 0.95)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
1995-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE")) %>%
METIER left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
1996-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE %in% c("3", "CCE")) %>%
METIER left_join(METIER, by = "METIER") %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
%>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = paste(Metier, "-", `Quotite-Trav`))) +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Salaires annuels moyens, ETPP
Cadres, Employés, Ouvriers, Prof. intermédiaires, SO
Values
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(METIER, by = "METIER") %>%
%>%
year_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = Metier)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Indice
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(METIER, by = "METIER") %>%
%>%
year_to_date group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Metier)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
Cadres , Professions intermédiaires
Indice - Nominal, Réel
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Nominal` = OBS_VALUE,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
Indice - Réel
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
#scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Cadres, Ouvriers, Prof. Intermédiaires
Indice - Réel
All
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4", "6", "SO")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
#scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Indice - Réel
All
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4", "6")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
#scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
1999-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4", "6")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date filter(date >= as.Date("1999-01-01")) %>%
group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1999-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
#scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1999, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
2007-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR == "SAL_ANN_MOY",
== "0",
SEXE `QUOTITE-TRAV` == "ETPP",
%in% c("CCE", "4", "6")) %>%
METIER left_join(METIER, by = "METIER") %>%
%>%
year_to_date filter(date >= as.Date("2007-01-01")) %>%
group_by(Metier) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2007-01-01")]) %>%
%>%
ungroup left_join(inflation, by = "date") %>%
arrange(date) %>%
transmute(date, Metier,
`Réel (inflation IPCH)` = IPCH[1]*OBS_VALUE/IPCH,
`Réel (inflation IPC)` = IPC[1]*OBS_VALUE/IPC) %>%
gather(variable, value, -date, -Metier) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable, linetype = Metier)) +
theme_minimal() + ylab("") + xlab("") +
#scale_color_manual(values = c("darkgrey", "#F8766D", "#619CFF")) +
scale_x_date(breaks = seq(1999, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1))
Médiane, 9ème décile, 1er décile
Values
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Indice
1996-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
2002-
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date filter(date >= as.Date("2002-01-01")) %>%
group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2002-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
Médiane, 1er quartile, 3ème quartile
Values
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_Q1", "SAL_ANN_D5", "SAL_ANN_Q3"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Indice
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_Q1", "SAL_ANN_D5", "SAL_ANN_Q3"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
Médiane, 9ème décile, 1er décile, 95ème centile, 99ème centile
Values - Log
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9", "SAL_ANN_C95", "SAL_ANN_C99"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Values - Linear
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9", "SAL_ANN_C95", "SAL_ANN_C99"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/1000, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5),
labels = scales::dollar_format(accuracy = 1, suffix = " k€", prefix = ""))
Indice
Code
`SALAIRES-ANNUELS` %>%
filter(INDICATEUR %in% c("SAL_ANN_D1", "SAL_ANN_D5", "SAL_ANN_D9", "SAL_ANN_C95", "SAL_ANN_C99"),
== "0",
SEXE `QUOTITE-TRAV` == "ETPP") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
Euros constants vs courants
Euros constants
Code
`SALAIRES-ANNUELS` %>%
filter(VALORISATION == "EUROS_CONST",
`QUOTITE-TRAV` == "SO") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2000-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.7)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 2))
Euros courants
Code
`SALAIRES-ANNUELS` %>%
filter(VALORISATION == "EUROS_COUR",
`QUOTITE-TRAV` == "SO") %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
%>%
year_to_date group_by(Indicateur) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2000-01-01")]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.8)) +
scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5))
Series
En 1980
Code
`SALAIRES-ANNUELS` %>%
filter(TIME_PERIOD == "1980") %>%
select(IDBANK, TITLE_FR, METIER, INDICATEUR, SEXE, OBS_VALUE) %>%
print_table_conditional()
Salaire moyen dans le secteur privé
Annuel, temps complet
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752364") %>%
select(TIME_PERIOD, OBS_VALUE, TITLE_FR) %>%
year_to_date() %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE / 1000, color = TITLE_FR)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.2)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 5))
Smic
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("000883657", "000883658")) %>%
year_to_date() %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE / 1000, color = TITLE_FR)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.2)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 200, 1))
Ratio D9/D1
Code
`SALAIRES-ANNUELS` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
filter(IDBANK %in% c("010752411", "001665221")) %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
year_to_date() %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(2, 5, 0.2))
Séries longues, Temps complets dans le privé
1951
Code
`SALAIRES-ANNUELS` %>%
filter(TIME_PERIOD %in% c("1951", "2010"),
is.finite(OBS_VALUE)) %>%
select_if(~ n_distinct(.) > 1) %>%
select(TITLE_FR, TIME_PERIOD, OBS_VALUE) %>%
group_by(TITLE_FR) %>%
filter(n() == 2) %>%
spread(TIME_PERIOD, OBS_VALUE) %>%
print_table_conditional
Les Deux - 010752375, 010752366
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(100, 200, 500, 800, 1000, 2000, 5000, 10000, 20000))
1975-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1975-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 100))
1984-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1984-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
1990-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
1993-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1993-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1993, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1996-
Hommes
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752373", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
Femmes
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752374", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
1999-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
2008-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("2008-01-01")) %>%
group_by(TITLE_FR) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE_FR)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 2))
Indice des prix Implicite - 010752375, 010752366
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = c(100, 200, 500, 800, 1000, 1500, 2000, 5000, 10000, 20000))
1975-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1975-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 100))
1984-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1984-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 10))
1990-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1990-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 5))
1993-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1993-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1993, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 5)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1996-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 5)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1999-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1999-01-01")) %>%
select(date, IDBANK, OBS_VALUE) %>%
spread(IDBANK, OBS_VALUE) %>%
mutate(OBS_VALUE = `010752366` / `010752375`) %>%
%>%
na.omit mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Indice des prix implicite") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 5000, 5))
Indice du pouvoir d’achat du salaire net annuel moyen dans le secteur privé
Tous
Log
Code
<- `SALAIRES-ANNUELS` %>%
plot_log filter(IDBANK == "010752375") %>%
year_to_date() %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 10) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 20))
plot_log
Linear
Code
<- plot_log + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
plot_linear scale_y_continuous(breaks = seq(100, 1000, 20))
plot_linear
Both
Code
::ggarrange(plot_linear + ggtitle("Linear plot"), plot_log + ggtitle("Log plot")) ggpubr
1965-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1965-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1965-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1975-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1975-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1975-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2))
1984-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1984-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1984-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2))
1990-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1990-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1990-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1993-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1993-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1993-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1993, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1996-
Salaire net moyen= + 10%
Salaire net moyen en EQTP =
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1996-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
1999-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("1999-01-01")) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
2008-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK == "010752375") %>%
year_to_date() %>%
filter(date >= as.Date("2008-01-01")) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 1)) +
geom_text_repel(aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1)),
fontface ="plain", color = "black", size = 3)
Différences de concepts
Moyen vs. Médian
EQTP:
010752333: Salaire net annuel moyen en équivalent temps plein dans le secteur privé - Ensemble des salariés
010752342: Médiane (D5) du salaire net annuel en équivalent temps plein dans le secteur privé - Ensemble des salariés
Temps complets:
010752366: Salaire net annuel moyen des postes à temps complet dans le secteur privé - Ensemble des salariés
010752396: Médiane (D5) du salaire net annuel des postes à temps complet dans le secteur privé - Ensemble des salariés
EQTP
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752342")) %>%
year_to_date() %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(Indicateur) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
2008-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752342")) %>%
year_to_date() %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(Indicateur) %>%
arrange(date) %>%
filter(date >= as.Date("2008-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2))
Temps complets
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752366", "010752396")) %>%
year_to_date() %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(Indicateur) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1996-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752366", "010752396")) %>%
year_to_date() %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(Indicateur) %>%
arrange(date) %>%
filter(date >= as.Date("1996-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1996, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
2008-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752366", "010752396")) %>%
year_to_date() %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(Indicateur) %>%
arrange(date) %>%
filter(date >= as.Date("2008-01-01")) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = Indicateur)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2))
EQTP vs. temps complets
Preuve que temps plein existait avant
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752366")) %>%
year_to_date() %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1996-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("1996-01-01")) %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10)) +
geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1), color = `Quotite-Trav`))
2008-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("2008-01-01")) %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1), color = `Quotite-Trav`))
2008-2021
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("2008-01-01"),
<= as.Date("2021-01-01")) %>%
date left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 1), color = `Quotite-Trav`))
2009-2021
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752333", "010752366")) %>%
year_to_date() %>%
filter(date >= as.Date("2009-01-01"),
<= as.Date("2021-01-01")) %>%
date left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 1) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 2)) +
geom_label(data = . %>% filter(date == max(date)), aes(x = date, y = OBS_VALUE, label = round(OBS_VALUE, 2), color = `Quotite-Trav`))
Secteur privé vs. Tous
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("001665161", "010752375")) %>%
year_to_date() %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1990-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("001665161", "010752375")) %>%
year_to_date() %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 1000, 2))
1999-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("001665161", "010752375")) %>%
year_to_date() %>%
left_join(`QUOTITE-TRAV`, by = "QUOTITE-TRAV") %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(`Quotite-Trav`) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = `Quotite-Trav`)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1999, 2100, 2) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 1))
Hommes, Femmes, Tous
Tous
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752373", "010752374")) %>%
year_to_date() %>%
left_join(SEXE, by = "SEXE") %>%
group_by(SEXE) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[1]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = Sexe)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1965-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752373", "010752374")) %>%
year_to_date() %>%
filter(date >= as.Date("1965-01-01")) %>%
left_join(SEXE, by = "SEXE") %>%
group_by(SEXE) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1965-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = Sexe)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))
1975-
Code
`SALAIRES-ANNUELS` %>%
filter(IDBANK %in% c("010752375", "010752373", "010752374")) %>%
year_to_date() %>%
filter(date >= as.Date("1975-01-01")) %>%
left_join(SEXE, by = "SEXE") %>%
group_by(SEXE) %>%
arrange(date) %>%
mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("1975-01-01")]) %>%
ggplot(.) + theme_minimal() +
xlab("") + ylab("Pouvoir d'achat du salaire net annuel moyen dans le privé") +
geom_line(aes(x = date, y = OBS_VALUE, color = Sexe)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
scale_x_date(breaks = seq(1920, 2100, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 1000, 10))