source | dataset | .html | .RData |
---|---|---|---|
insee | ir_salaires_SL_csv | 2025-01-05 | NA |
Séries longues sur les salaires dans le secteur privé - Base Tous salariés - Insee Résultats
Data - INSEE
Info
Données sur les salaires
source | dataset | .html | .RData |
---|---|---|---|
dares | les-indices-de-salaire-de-base | 2024-11-04 | 2024-12-15 |
insee | CNA-2014-RDB | 2025-01-07 | 2025-01-05 |
insee | CNT-2014-CSI | 2025-01-07 | 2025-01-05 |
insee | ECRT2023 | 2025-01-07 | 2023-06-30 |
insee | if230 | 2025-01-07 | 2021-12-04 |
insee | INDICE-TRAITEMENT-FP | 2025-01-07 | 2025-01-05 |
insee | ir_salaires_SL_23_csv | 2025-01-07 | NA |
insee | ir_salaires_SL_csv | 2025-01-05 | NA |
insee | SALAIRES-ACEMO | 2025-01-05 | 2025-01-05 |
insee | SALAIRES-ACEMO-2017 | 2025-01-05 | 2025-01-05 |
insee | SALAIRES-ANNUELS | 2025-01-05 | 2025-01-05 |
insee | t_7401 | 2025-01-05 | 2024-10-18 |
insee | t_salaire_val | 2025-01-05 | 2024-12-21 |
Info
- Séries longues sur les salaires dans le secteur privé. html
metadonnées
Tables
Code
%>%
metadonnees group_by(COD_VAR, LIB_VAR) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
Tous
Code
%>%
metadonnees print_table_conditional()
inflation
Table
Code
%>%
inflation print_table_conditional()
Graph
All
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(100, 200, 300, 500, 800, 1000, 1200, 1500, 2000)) +
theme_minimal() + xlab("") + ylab("")
1990-
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 filter(date >= as.Date("1990-01-01")) %>%
mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric,
INFLATION = 100*INFLATION/INFLATION[date == as.Date("1990-01-01")]) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 10)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1990)")
1995-
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 filter(date >= as.Date("1995-01-01")) %>%
mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric,
INFLATION = 100*INFLATION/INFLATION[date == as.Date("1995-01-01")]) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 10)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1990)")
1996-
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 filter(date >= as.Date("1996-01-01")) %>%
mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric,
INFLATION = 100*INFLATION/INFLATION[date == as.Date("1996-01-01")]) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2024, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 1996)")
2000-
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 filter(date >= as.Date("2000-01-01")) %>%
mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric,
INFLATION = 100*INFLATION/INFLATION[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 2000)")
2012-
Code
%>%
inflation rename(year = ANNEE14) %>%
%>%
year_to_date2 filter(date >= as.Date("2012-01-01")) %>%
mutate(INFLATION = INFLATION %>% gsub(",", "\\.", .) %>% as.numeric,
INFLATION = 100*INFLATION/INFLATION[date == as.Date("2012-01-01")]) %>%
+ geom_line(aes(x = date, y = INFLATION)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 1)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 2012)")
IND_CR35 – En euros, pour une durée de 35 heures hebdomadaires
Table
Code
%>%
ind_cr35 print_table_conditional()
ANNEE12 | SHBO | SMICBM | SMICNM | PLFB | PLFN | SNAM_TC | SNAM_EQTP | IPC |
---|---|---|---|---|---|---|---|---|
2000 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100 | 100 | 100.0 |
2001 | 104.3 | 103.6 | 103.8 | 101.7 | 101.8 | 102.1 | 102.3 | 101.6 |
2002 | 108.2 | 107.0 | 107.2 | 105.0 | 105.2 | 104.4 | 104.5 | 103.6 |
2003 | 111.3 | 111.1 | 110.8 | 108.5 | 108.3 | 106.4 | 106.7 | 105.8 |
2004 | 114.4 | 117.3 | 117.0 | 110.5 | 110.2 | 108.7 | 109.1 | 108.0 |
2005 | 117.9 | 123.9 | 123.4 | 112.3 | 111.8 | 111.9 | 112.2 | 110.0 |
2006 | 121.5 | 129.2 | 128.4 | 115.5 | 114.8 | 113.7 | 114.3 | 111.8 |
2007 | 124.9 | 132.4 | 131.7 | 119.7 | 119.0 | 117.3 | 117.9 | 113.5 |
2008 | 128.6 | 136.4 | 135.6 | 123.7 | 123.0 | 121.1 | 121.5 | 116.7 |
2009 | 131.9 | 138.9 | 138.1 | 127.6 | 126.9 | 122.8 | 123.1 | 116.8 |
2010 | 134.4 | 140.4 | 139.6 | 128.7 | 128.0 | 125.3 | 125.6 | 118.5 |
2011 | 137.2 | 142.9 | 142.1 | 131.5 | 130.7 | 128.3 | 128.7 | 121.0 |
2012 | 140.3 | 147.5 | 146.5 | 135.3 | 134.3 | 130.1 | 130.7 | 123.4 |
2013 | 142.9 | 149.4 | 148.2 | 137.7 | 136.6 | 131.1 | 131.5 | 124.5 |
2014 | 145.1 | 151.0 | 149.3 | 139.6 | 138.0 | 132.3 | 132.9 | 125.1 |
2015 | 146.8 | 152.3 | 150.3 | 141.5 | 139.6 | 133.9 | 134.4 | 125.2 |
2016 | 148.5 | 153.2 | 151.0 | 143.6 | 141.5 | 134.5 | 135.2 | 125.4 |
2017 | 150.3 | 154.7 | 152.3 | 145.9 | 143.7 | 137.6 | 137.9 | 126.7 |
2018 | 152.6 | 156.6 | 155.7 | 147.7 | 146.9 | 140.5 | 140.9 | 129.0 |
2019 | 155.2 | 159.0 | 159.3 | 150.7 | 151.0 | nd | nd | 130.5 |
2020 | 157.7 | 160.9 | 161.2 | 153.0 | 153.3 | nd | nd | 131.1 |
Inflation
Code
%>%
ind_cr35 rename(year = ANNEE12) %>%
%>%
year_to_date2 filter(date >= as.Date("2000-01-01")) %>%
mutate(IPC = 100*IPC/IPC[date == as.Date("2000-01-01")]) %>%
+ geom_line(aes(x = date, y = IPC)) +
ggplot scale_x_date(breaks = seq(1950, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(100, 200, 5)) +
theme_minimal() + xlab("") + ylab("Inflation (100 = 2000)")
Smic net, Salaire horaire de base des ouvriers
Code
%>%
ind_cr35 gather(COD_MOD, value, -ANNEE12) %>%
rename(year = ANNEE12) %>%
%>%
year_to_date2 left_join(metadonnees %>%
filter(COD_VAR == "IND_COURANT_35H"), by = "COD_MOD") %>%
filter(COD_MOD %in% c("SHBO", "IPC", "SMICNM")) %>%
group_by(COD_MOD) %>%
mutate(value = as.numeric(value),
value = 100*value/value[date == as.Date("2000-01-01")]) %>%
ggplot() + ylab("Indice (2000 = 100)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = LIB_MOD1)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
SMIC39 – Pour 40 heures puis 39 heures hebdomadaires, de 1951 à 2005 (en euros)
Table
Code
%>%
smic39 print_table_conditional()
Nobs
Code
%>%
smic39 gather(COD_MOD, value, -ANNEE13) %>%
left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
group_by(COD_MOD, LIB_MOD1) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
COD_MOD | LIB_MOD1 | Nobs |
---|---|---|
COUT_SMICA | Coût annuel d'un salarié au Smic | 55 |
COUT_SMICM | Coût mensuel d'un salarié au Smic | 55 |
DUREE | Durée légale mensuelle (en heures) | 55 |
SMICBA | Salaire minimum brut annuel | 55 |
SMICBH | Salaire minimum brut horaire | 55 |
SMICBM | Salaire minimum brut mensuel | 55 |
SMICNA | Salaire minimum annuel net de prélèvements | 55 |
SMICNH | Salaire minimum horaire net de prélèvements | 55 |
SMICNM | Salaire minimum mensuel net de prélèvements | 55 |
SMIC35 – Pour 35 heures hebdomadaires (en euros)
Table
Code
%>%
smic35 print_table_conditional()
ANNEE12 | DUREE | SMICBH | SMICBM | SMICBA | SMICNH | SMICNM | SMICNA | COUT_SMICM | COUT_SMICA |
---|---|---|---|---|---|---|---|---|---|
2000 | 151.7 | 6.3 | 957.0 | 11484.2 | 5.0 | 756.0 | 9071.4 | 1098.2 | 13178.7 |
2001 | 151.7 | 6.5 | 991.9 | 11902.8 | 5.2 | 784.6 | 9415.1 | 1135.1 | 13621.6 |
2002 | 151.7 | 6.8 | 1023.8 | 12285.0 | 5.3 | 810.3 | 9723.6 | 1172.7 | 14072.5 |
2003 | 151.7 | 7.0 | 1063.2 | 12758.2 | 5.5 | 837.8 | 10053.5 | 1223.0 | 14676.2 |
2004 | 151.7 | 7.4 | 1122.3 | 13468.0 | 5.8 | 884.4 | 10612.8 | 1295.3 | 15543.4 |
2005 | 151.7 | 7.8 | 1186.0 | 14232.4 | 6.2 | 932.7 | 11192.4 | 1370.4 | 16444.8 |
2006 | 151.7 | 8.2 | 1236.1 | 14833.0 | 6.4 | 970.3 | 11643.9 | 1428.5 | 17142.5 |
2007 | 151.7 | 8.4 | 1267.2 | 15206.1 | 6.6 | 995.2 | 11942.9 | 1463.3 | 17560.0 |
2008 | 151.7 | 8.6 | 1305.3 | 15664.1 | 6.8 | 1025.2 | 12302.6 | 1507.1 | 18085.0 |
2009 | 151.7 | 8.8 | 1329.4 | 15952.3 | 6.9 | 1044.1 | 12528.9 | 1536.5 | 18437.7 |
2010 | 151.7 | 8.9 | 1343.8 | 16125.2 | 7.0 | 1055.4 | 12664.7 | 1555.1 | 18661.7 |
2011 | 151.7 | 9.0 | 1367.4 | 16408.8 | 7.1 | 1074.0 | 12887.5 | 1581.5 | 18977.6 |
2012 | 151.7 | 9.3 | 1412.0 | 16944.2 | 7.3 | 1107.3 | 13288.2 | 1633.0 | 19595.4 |
2013 | 151.7 | 9.4 | 1430.2 | 17162.6 | 7.4 | 1120.4 | 13445.2 | 1655.2 | 19862.3 |
2014 | 151.7 | 9.5 | 1445.4 | 17344.6 | 7.4 | 1128.7 | 13544.4 | 1674.6 | 20095.5 |
2015 | 151.7 | 9.6 | 1457.5 | 17490.2 | 7.5 | 1136.0 | 13631.9 | 1645.5 | 19745.7 |
2016 | 151.7 | 9.7 | 1466.6 | 17599.4 | 7.5 | 1141.6 | 13699.4 | 1646.2 | 19754.6 |
2017 | 151.7 | 9.8 | 1480.3 | 17763.2 | 7.6 | 1151.5 | 13818.0 | 1660.8 | 19929.2 |
2018 | 151.7 | 9.9 | 1498.5 | 17981.6 | 7.8 | 1177.2 | 14125.9 | 1681.2 | 20174.6 |
2019 | 151.7 | 10.0 | 1521.2 | 18254.6 | 7.9 | 1204.2 | 14450.3 | 1602.3 | 19228.2 |
2020 | 151.7 | 10.2 | 1539.4 | 18473.0 | 8.0 | 1218.6 | 14623.2 | 1574.8 | 18897.1 |
Nobs
Code
%>%
smic35 gather(COD_MOD, value, -ANNEE12) %>%
left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
group_by(COD_MOD, LIB_MOD1) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
COD_MOD | LIB_MOD1 | Nobs |
---|---|---|
COUT_SMICA | Coût annuel d'un salarié au Smic | 21 |
COUT_SMICM | Coût mensuel d'un salarié au Smic | 21 |
DUREE | Durée légale mensuelle (en heures) | 21 |
SMICBA | Salaire minimum brut annuel | 21 |
SMICBH | Salaire minimum brut horaire | 21 |
SMICBM | Salaire minimum brut mensuel | 21 |
SMICNA | Salaire minimum annuel net de prélèvements | 21 |
SMICNH | Salaire minimum horaire net de prélèvements | 21 |
SMICNM | Salaire minimum mensuel net de prélèvements | 21 |
Cout mensuel, Salaire mensuel, salaire net mensuel - Indice
All
Code
%>%
smic35 gather(COD_MOD, value, -ANNEE12) %>%
rename(year = ANNEE12) %>%
%>%
year_to_date2 left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
filter(COD_MOD %in% c("COUT_SMICM", "SMICBM", "SMICNM")) %>%
group_by(COD_MOD) %>%
mutate(value = 100*value/value[date == as.Date("2000-01-01")]) %>%
ggplot() + ylab("Indice (2000 = 100)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = LIB_MOD1)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = ""))
2012
Code
%>%
smic35 gather(COD_MOD, value, -ANNEE12) %>%
rename(year = ANNEE12) %>%
%>%
year_to_date2 left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
filter(COD_MOD %in% c("COUT_SMICM", "SMICBM", "SMICNM"),
>= as.Date("2012-01-01")) %>%
date group_by(COD_MOD) %>%
mutate(value = 100*value/value[date == as.Date("2012-01-01")]) %>%
ggplot() + ylab("Indice (2000 = 100)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = LIB_MOD1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 1),
labels = dollar_format(accuracy = 1, prefix = ""))
Cout mensuel, Salaire mensuel, salaire net mensuel - Euros
All
Code
%>%
smic35 gather(COD_MOD, value, -ANNEE12) %>%
rename(year = ANNEE12) %>%
%>%
year_to_date2 left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
filter(COD_MOD %in% c("COUT_SMICM", "SMICBM", "SMICNM")) %>%
ggplot() + ylab("Montant mensuel") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = LIB_MOD1)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 2000, 100),
labels = dollar_format(accuracy = 1, prefix = "", suffix = "€"))
2012
Code
%>%
smic35 gather(COD_MOD, value, -ANNEE12) %>%
rename(year = ANNEE12) %>%
%>%
year_to_date2 left_join(metadonnees %>%
filter(COD_VAR == "SMIC"), by = "COD_MOD") %>%
filter(COD_MOD %in% c("COUT_SMICM", "SMICBM", "SMICNM"),
>= as.Date("2012-01-01")) %>%
date ggplot() + ylab("Montant mensuel") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = LIB_MOD1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.4),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 2000, 50),
labels = dollar_format(accuracy = 1, prefix = "", suffix = "€"))