Dépenses, recettes et besoin de financement des administrations publiques - valeurs aux prix courants

Data - INSEE

Info

source dataset Title .html .rData
insee t_compteapu_val Dépenses, recettes et besoin de financement des administrations publiques - valeurs aux prix courants 2025-10-10 2025-08-29
insee T_7301 NA NA NA

Données sur la dette publique

source dataset Title .html .rData
gfd debt Debt 2021-08-22 2021-03-01
imf HPDD NA NA NA
insee CNA-2014-DETTE-APU Dette et déficit des administrations publiques au sens de Maastricht 2025-10-10 2025-10-09
insee COMPTES-ETAT Budget de l’État 2025-10-10 2025-10-09
insee DETTE-TRIM-APU-2020 Dette des administrations publiques au sens de Maastricht 2025-10-10 2025-05-24
insee T_3217 3.217 – Principaux impôts par catégorie (En milliards d'euros) 2025-10-10 2025-09-29
insee T_7301 NA NA NA
insee t_compteapu_val Dépenses, recettes et besoin de financement des administrations publiques - valeurs aux prix courants 2025-10-10 2025-08-29

LAST_COMPILE

LAST_COMPILE
2025-10-11

Last

date Nobs
2025-04-01 30

Structure

column

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  group_by(column, operation, Line1, Line2, Operation) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
column operation Line1 Line2 Operation Nobs
2 B9NF Capacité (+) ou besoin (-) de financement Capacité (+) ou besoin (-) de financement Capacité (+) ou besoin (-) de financement 306
4 DEPENSES Dépenses Dépenses Dépenses 182
5 P2 Dépenses Dépenses de fonctionnement Consommations intermédiaires 306
6 D1 Dépenses Dépenses de fonctionnement Rémunération des salariés 306
7 D122 Dépenses Dépenses de fonctionnement dont : Cotisations sociales imputées 306
8 D29, D4 hors D41, D5 Dépenses Dépenses de fonctionnement Autres dépenses de fonctionnement 306
9 D41 Dépenses Intérêts Intérêts 306
10 D62 Dépenses Prestations et transferts Prestations sociales autres que transferts sociaux en nature 306
11 D632 Dépenses Prestations et transferts Transferts sociaux en nature de produits marchands 306
12 D3 Dépenses Prestations et transferts Subventions 182
13 D7 Dépenses Prestations et transferts Autres transferts courants 306
14 D9 hors D995 Dépenses Prestations et transferts Transferts en capital 306
15 P51 Dépenses Acquisition nette d'actifs non financiers Formation brute de capital fixe 306
16 P52, P53, NP Dépenses Acquisition nette d'actifs non financiers Autres acquisitions nettes d'actifs non financiers 182
18 RECETTES Recettes Recettes Recettes 182
19 P1 partie Recettes Recettes de production Recettes de production hors subvention à la production 182
20 D39 Recettes Recettes de production Autres subventions sur la production 182
21 D41 Recettes Revenus de la propriété Intérêts 306
22 D4 hors D41 Recettes Revenus de la propriété Revenus de la propriété autres que les intérêts 306
23 D2 Recettes Impôts et cotisations sociales Impôts sur la production et les importations 306
24 D211 Recettes Impôts et cotisations sociales dont: Taxe sur la valeur ajoutée brute 306
25 D5 Recettes Impôts et cotisations sociales Impôts courants sur le revenu et le patrimoine 306
26 D91 Recettes Impôts et cotisations sociales Impôts en capital 306
27 D611+D613 Recettes Impôts et cotisations sociales Cotisations sociales effectives 306
28 D612 Recettes Impôts et cotisations sociales Cotisations sociales imputées 306
29 D995 Recettes Impôts et cotisations sociales Impôts et cotisations dus non recouvrables nets 190
30 D7 Recettes Autres transferts Autres transferts courants 306
31 D9 hors D91, D995 Recettes Autres transferts Transferts en capital 182
33 PIB PIB en valeur PIB en valeur PIB en valeur 306
34 B9NF/PIB Capacité (+) ou besoin (-) de financement (% de PIB) Capacité (+) ou besoin (-) de financement (% de PIB) Capacité (+) ou besoin (-) de financement (% de PIB) 306

Intérêts (% du PIB)

Tous

Code
t_compteapu_val %>%
  filter(column %in% c(21, 9, 33)) %>%
  spread(column, value) %>%
  transmute(date,
         `Intérêts (dépenses)` = `9`/`33`,
         `Intérêts (recettes)` = `21`/`33`) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.9)) +
  scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, .5),
                     labels = scales::percent_format(accuracy = .1))

1990-

Code
t_compteapu_val %>%
  filter(column %in% c(21, 9, 33),
         date >= as.Date("1990-01-01")) %>%
  spread(column, value) %>%
  transmute(date,
         `Intérêts (dépenses)` = `9`/`33`,
         `Intérêts (recettes)` = `21`/`33`) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.9)) +
  scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, .5),
                     labels = scales::percent_format(accuracy = .1))

2008-

Code
t_compteapu_val %>%
  filter(column %in% c(21, 9, 33),
         date >= as.Date("2008-01-01")) %>%
  spread(column, value) %>%
  transmute(date,
         `Intérêts (dépenses)` = `9`/`33`,
         `Intérêts (recettes)` = `21`/`33`) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.9)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, .5),
                     labels = scales::percent_format(accuracy = .1))

Déficit public (% du PIB)

Déficit total

Code
t_compteapu_val %>%
  filter(column %in% c(34)) %>%
  transmute(date,
         value = value/100) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("Déficit Public (% du PIB)") + xlab("") +
  geom_line(aes(x = date, y = value)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.9)) +
  scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

Déficit total, déficit primaire, charges d’intérêt

Tous

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2005-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2005-01-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2008-2016

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2008-01-01"),
         date <= as.Date("2016-10-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2015-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2015-01-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2017T2-

Code
df <- t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2017-04-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  mutate(date = zoo::as.yearqtr(paste0(year(date), " Q", quarter(date))))

ggplot(data = df) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_yearqtr(labels = date_format("%Y T%q"),
                  breaks = seq(from = min(df$date), to = max(df$date), by = 0.5)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2019-

Code
df <- t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2019-01-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB,
            `Charge d'intérêt` = B9NF/PIB - (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  mutate(date = zoo::as.yearqtr(paste0(year(date), " Q", quarter(date))))

ggplot(data = df) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_yearqtr(labels = date_format("%Y T%q"),
                  breaks = seq(from = min(df$date), to = max(df$date), by = 0.25)) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

Déficit total, déficit primaire

Tous

Code
df <- t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  mutate(date = zoo::as.yearqtr(paste0(year(date), " Q", quarter(date))))

ggplot(data = df) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.2)) +
  scale_x_yearqtr(labels = date_format("%Y Q%q")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2005-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2005-01-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.15, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2008-2016

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2008-01-01"),
         date <= as.Date("2016-10-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

2015-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  select(date, variable, value) %>%
  filter(variable %in% c("D41_d", "D41_r", "PIB", "B9NF")) %>%
  filter(date >= as.Date("2015-01-01")) %>%
  spread(variable, value) %>%
  transmute(date,
            `Déficit total` = B9NF/PIB,
            `Déficit primaire` = (B9NF + D41_d-D41_r)/PIB) %>%
  gather(variable, value, -date) %>%
  filter(!is.na(value)) %>%
  ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.8, 0.2)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                     labels = scales::percent_format(accuracy = 1))

Elasticité des recettes au PIB

1980-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  filter(operation %in% c("PIB", "DEPENSES", "RECETTES")) %>%
  select(operation, date, value) %>%
  arrange(date) %>%
  spread(operation, value) %>%
  na.omit %>%
  mutate(DEPENSES_roll = rollsum(DEPENSES, k = 4, fill = NA),
         RECETTES_roll = rollsum(RECETTES, k = 4, fill = NA),
         PIB_roll = rollsum(PIB, k = 4, fill = NA)) %>%
  mutate(croissance_PIB = PIB_roll/lag(PIB_roll, 4)-1,
         croissance_RECETTES = RECETTES_roll/lag(RECETTES_roll, 4)-1,
         croissance_DEPENSES = DEPENSES_roll/lag(DEPENSES_roll, 4)-1,
         `Elasticité des recettes` = croissance_RECETTES/croissance_PIB,
         `Elasticité des dépenses` = croissance_DEPENSES/croissance_PIB) %>%
  select(date, `Elasticité des recettes`, `Elasticité des dépenses`) %>%
  gather(variable, value, -date) %>%
  ggplot(.) + theme_minimal() + ylab("") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.2, 0.8)) +
  scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y"))

2010-

Code
t_compteapu_val %>%
  left_join(variable, by = "column") %>%
  filter(operation %in% c("PIB", "DEPENSES", "RECETTES")) %>%
  select(operation, date, value) %>%
  arrange(date) %>%
  spread(operation, value) %>%
  na.omit %>%
  mutate(DEPENSES_roll = rollsum(DEPENSES, k = 4, fill = NA),
         RECETTES_roll = rollsum(RECETTES, k = 4, fill = NA),
         PIB_roll = rollsum(PIB, k = 4, fill = NA)) %>%
  mutate(croissance_PIB = PIB_roll/lag(PIB_roll, 4)-1,
         croissance_RECETTES = RECETTES_roll/lag(RECETTES_roll, 4)-1,
         croissance_DEPENSES = DEPENSES_roll/lag(DEPENSES_roll, 4)-1,
         `Elasticité des recettes` = croissance_RECETTES/croissance_PIB,
         `Elasticité des dépenses` = croissance_DEPENSES/croissance_PIB) %>%
  select(date, `Elasticité des recettes`, `Elasticité des dépenses`) %>%
  gather(variable, value, -date) %>%
  filter(date >= as.Date("2010-01-01")) %>%
  ggplot(.) + theme_minimal() + ylab("") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.2, 0.8)) +
  scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y"))