Défaillances d’entreprises

Data - INSEE

Info

LAST_UPDATE

source dataset Title .html .rData
insee DEFAILLANCES-ENTREPRISES Défaillances d’entreprises 2025-10-10 2025-10-09
bdf DIREN Observatoire des Entreprises 2025-08-28 2025-04-29
eurostat sts_rb_q Business registration and bankruptcy index by NACE Rev.2 activity - quarterly data - sts_rb_q 2025-10-10 2025-10-09

LAST_DOWNLOAD

dataset LAST_DOWNLOAD
DEFAILLANCES-ENTREPRISES 2025-10-11 11:54:29
2025-02-04 14:34:02

LAST_COMPILE

LAST_COMPILE
2025-10-11

TITLE_FR

Code
`DEFAILLANCES-ENTREPRISES` %>%
  group_by(IDBANK, TITLE_FR) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

CORRECTION

Code
`DEFAILLANCES-ENTREPRISES` %>%
  group_by(CORRECTION) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
CORRECTION Nobs
BRUT 156372
CVS-CJO 5124
RECALAGE 42

FREQ

Code
`DEFAILLANCES-ENTREPRISES` %>%
  left_join(FREQ,  by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
FREQ Freq Nobs
M Monthly 121736
T NA 39760
A Annual 42

ACTIVITE_CREAT_ENT

Code
`DEFAILLANCES-ENTREPRISES` %>%
  left_join(ACTIVITE_CREAT_ENT, by = "ACTIVITE_CREAT_ENT") %>%
  group_by(ACTIVITE_CREAT_ENT, Activite_creat_ent) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
ACTIVITE_CREAT_ENT Activite_creat_ent Nobs
ENS Ensemble 64650
AZ A10 AZ - Agriculture, sylviculture et pêche 8808
BE A10 BE - Industrie 8808
FZ A10 FZ - Construction 8808
G A21 G - Commerce et réparation automobile 8808
H A21 H - Transports 8808
I A21 I - Hébergement, restauration 8808
JZ A10 JZ - Information et communication 8808
KZ A10 KZ - Activités financières et d'assurance 8808
LZ A10 LZ - Activités immobilières 8808
MN A10 MN - Activités spécialisées, scientifiques et techniques et activités de services administratifs et de soutien 8808
PQS A21 P à S - Enseignement, santé humaine, action sociale et services aux ménages 8808

REF_AREA

Code
`DEFAILLANCES-ENTREPRISES` %>%
  group_by(REF_AREA) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

TIME_PERIOD

Code
`DEFAILLANCES-ENTREPRISES` %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(TIME_PERIOD)) %>%
  print_table_conditional()

Défaillances

2017, Juillet 2021

Code
`DEFAILLANCES-ENTREPRISES` %>%
  filter(REF_AREA == "FE",
         NATURE == "VALEUR_ABSOLUE",
         TIME_PERIOD %in% c("2017-01", "2021-06"),
         CORRECTION == "CVS-CJO",
         FREQ == "M") %>%
  left_join(ACTIVITE_CREAT_ENT, by = "ACTIVITE_CREAT_ENT") %>%
  select(TIME_PERIOD, ACTIVITE_CREAT_ENT, Activite_creat_ent, OBS_VALUE) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  mutate(Croissance = round(100*(`2021-06`/`2017-01`-1), 1)) %>%
  arrange(Croissance) %>%
  print_table_conditional()
ACTIVITE_CREAT_ENT Activite_creat_ent 2017-01 2021-06 Croissance
I A21 I - Hébergement, restauration 606 179 -70.5
PQS A21 P à S - Enseignement, santé humaine, action sociale et services aux ménages 444 135 -69.6
BE A10 BE - Industrie 334 127 -62.0
FZ A10 FZ - Construction 1013 456 -55.0
ENS Ensemble 4621 2116 -54.2
G A21 G - Commerce et réparation automobile 1040 481 -53.8
MN A10 MN - Activités spécialisées, scientifiques et techniques et activités de services administratifs et de soutien 498 276 -44.6
JZ A10 JZ - Information et communication 109 61 -44.0
H A21 H - Transports 152 92 -39.5
KZ A10 KZ - Activités financières et d'assurance 98 62 -36.7
AZ A10 AZ - Agriculture, sylviculture et pêche 129 99 -23.3
LZ A10 LZ - Activités immobilières 150 126 -16.0

ENS, BE, AZ

Niveaux

Code
`DEFAILLANCES-ENTREPRISES` %>%
  filter(REF_AREA == "FE",
         NATURE == "VALEUR_ABSOLUE",
         ACTIVITE_CREAT_ENT %in% c("ENS", "BE", "AZ"),
         CORRECTION == "CVS-CJO",
         FREQ == "M") %>%
  month_to_date %>%
  left_join(ACTIVITE_CREAT_ENT, by = "ACTIVITE_CREAT_ENT") %>%
  ggplot() + ylab("Défaillances d'entreprises") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Activite_creat_ent)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = c(100, 200, 300, 500, 800, 10, 20, 30, 50, 1000, 2000, 3000, 5000, 10000),
                     labels = dollar_format(accuracy = 1, prefix = ""))

100

Code
`DEFAILLANCES-ENTREPRISES` %>%
  filter(REF_AREA == "FE",
         NATURE == "VALEUR_ABSOLUE",
         ACTIVITE_CREAT_ENT %in% c("ENS", "BE", "AZ"),
         CORRECTION == "CVS-CJO",
         FREQ == "M") %>%
  month_to_date %>%
  filter(date >= as.Date("2017-01-01")) %>%
  left_join(ACTIVITE_CREAT_ENT, by = "ACTIVITE_CREAT_ENT") %>%
  group_by(ACTIVITE_CREAT_ENT) %>%
  mutate(OBS_VALUE = 100*OBS_VALUE/OBS_VALUE[date == as.Date("2017-01-01")]) %>%
  ggplot() + ylab("Défaillances d'entreprises (100 = 2017)") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = OBS_VALUE, color = Activite_creat_ent)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.2),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(10, 200, 10),
                     labels = dollar_format(accuracy = 1, prefix = ""))