source | dataset | .html | .RData |
---|---|---|---|
bea | T10705 | 2024-01-06 | 2023-12-17 |
bea | T50100 | 2024-01-06 | 2023-12-17 |
source | dataset | .html | .RData |
---|---|---|---|
fred | gdp | 2024-02-03 | 2024-02-11 |
fred | unr | 2024-02-03 | 2024-02-03 |
oecd | QNA | 2024-01-28 | 2024-02-03 |
oecd | SNA_TABLE1 | 2024-01-28 | 2024-02-03 |
LAST_COMPILE |
---|
2024-02-11 |
date | Nobs |
---|---|
2023-09-30 | 34 |
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 1]) %>%
filter(LineNumber %in% c(14, 25)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.9)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% of GDP") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = scales::percent_format(accuracy = 1))
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 1]) %>%
filter(LineNumber %in% c(17, 18, 23)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.2)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% of GDP") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = scales::percent_format(accuracy = 1))
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 1]) %>%
filter(LineNumber %in% c(5, 25)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.2)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% of Personal Income") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 10),
labels = scales::percent_format(accuracy = 1))
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 1]) %>%
filter(LineNumber %in% c(5, 17)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.2)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% of Personal Income") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 30, 1),
labels = scales::percent_format(accuracy = 1))
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[1]) %>%
filter(LineNumber %in% c(25, 16)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.6, 0.9)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
ylab("% of GDP") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = scales::percent_format(accuracy = 1))
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1929, 1949, 1969, 1989, 2009, 2019)) %>%
group_by(year) %>%
mutate(value = round(100*DataValue/DataValue[1], 1)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
mutate_at(vars(-1, -2), funs(ifelse(is.na(.), "", paste0(., " %")))) %>%
select(-LineNumber) %>%
setNames(c("", names(.)[2:7])) %>%
knitr::kable(booktabs = TRUE,
linesep = "") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
latex_options = c("striped", "hold_position"))
1929 | 1949 | 1969 | 1989 | 2009 | 2019 | |
---|---|---|---|---|---|---|
Gross domestic product (GDP) | 100 % | 100 % | 100 % | 100 % | 100 % | 100 % |
Plus: Income receipts from the rest of the world | 1.1 % | 0.7 % | 1.2 % | 3.1 % | 4.8 % | 5.5 % |
Less: Income payments to the rest of the world | 0.4 % | 0.2 % | 0.6 % | 2.7 % | 3.7 % | 4.1 % |
Equals: Gross national product | 100.7 % | 100.5 % | 100.6 % | 100.4 % | 101 % | 101.3 % |
Less: Consumption of fixed capital | 10 % | 11.8 % | 12.3 % | 14.9 % | 16.4 % | 16.2 % |
Private | 9 % | 8.3 % | 8.8 % | 11.5 % | 13.3 % | 13.4 % |
Domestic business | 7.8 % | 6.9 % | 7.3 % | 9.4 % | 10.6 % | 10.5 % |
Capital consumption allowances | 6.3 % | 5.5 % | 7.8 % | 10.4 % | 10.8 % | 12.6 % |
Less: Capital consumption adjustment | -1.5 % | -1.4 % | 0.5 % | 1 % | 0.2 % | 2 % |
Households and institutions | 1.2 % | 1.3 % | 1.5 % | 2.1 % | 2.7 % | 2.9 % |
Government | 1 % | 3.6 % | 3.5 % | 3.3 % | 3.1 % | 2.8 % |
General government | 0.8 % | 3.4 % | 3.3 % | 3 % | 2.7 % | 2.4 % |
Government enterprises | 0.1 % | 0.2 % | 0.2 % | 0.3 % | 0.4 % | 0.4 % |
Equals: Net national product | 90.8 % | 88.6 % | 88.3 % | 85.6 % | 84.7 % | 85.1 % |
Less: Statistical discrepancy | 0.7 % | 0.6 % | 0.2 % | 1.2 % | 1.3 % | 0.2 % |
Equals: National income | 90.1 % | 88 % | 88.2 % | 84.4 % | 83.3 % | 84.9 % |
Corporate profits with inventory valuation and capital consumption adjustments | 10.4 % | 10.7 % | 9.7 % | 7.4 % | 9.8 % | 11.5 % |
Taxes on production and imports less subsidies | 6.5 % | 7.5 % | 7.8 % | 6.6 % | 6.7 % | 6.8 % |
Contributions for government social insurance, domestic | 0.1 % | 1.8 % | 4.3 % | 6.8 % | 6.7 % | 6.6 % |
Net interest and miscellaneous payments on assets | 4.4 % | 1 % | 3.2 % | 7.5 % | 3.6 % | 2.4 % |
Business current transfer payments (net) | 0.5 % | 0.3 % | 0.5 % | 0.7 % | 0.9 % | 0.7 % |
Current surplus of government enterprises | 0 % | 0 % | 0 % | 0.1 % | -0.1 % | -0.1 % |
Plus: Personal income receipts on assets | 12.1 % | 6.6 % | 9.9 % | 17 % | 12.7 % | 13.7 % |
Plus: Personal current transfer receipts | 1.1 % | 4.1 % | 6.1 % | 9.6 % | 14.8 % | 14.6 % |
Equals: Personal income | 81.6 % | 77.5 % | 78.6 % | 81.9 % | 83.3 % | 85.3 % |
Gross domestic income (GDI) | 99.3 % | 99.4 % | 99.8 % | 98.8 % | 98.7 % | 99.8 % |
Average of GDP and GDI | 99.6 % | 99.7 % | 99.9 % | 99.4 % | 99.3 % | 99.9 % |
Gross national income | 100 % | 99.8 % | 100.4 % | 99.2 % | 99.7 % | 101.1 % |
Gross national factor income | 93.1 % | 92.1 % | 92.2 % | 91.8 % | 92.3 % | 93.6 % |
Net domestic product | 90 % | 88.2 % | 87.7 % | 85.1 % | 83.6 % | 83.8 % |
Net domestic income | 89.3 % | 87.5 % | 87.6 % | 83.9 % | 82.3 % | 83.6 % |
Net national factor income | 83.1 % | 80.2 % | 79.9 % | 77 % | 75.9 % | 77.5 % |
Net domestic purchases | 89.7 % | 86.2 % | 87.6 % | 86.7 % | 86.5 % | 86.5 % |
Statistical discrepancy as a percentage of GDP | 0 % | 0 % | 0 % | 0 % | 0 % | 0 % |
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1938, 1958, 1978, 1998, 2018)) %>%
group_by(year) %>%
mutate(value = round(100*DataValue/DataValue[1], 1)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
T10705 %>% filter(FREQ == "A") %>% select(-FREQ) %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1938, 1958, 1978, 1998, 2018)) %>%
group_by(year) %>%
mutate(value = round(DataValue/1000)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}