source | dataset | .html | .RData |
---|---|---|---|
eurostat | demo_minfind | 2024-11-01 | 2024-10-08 |
oecd | FAMILY | 2024-09-15 | 2024-02-13 |
Infant mortality rates
Data - Eurostat
Info
Last
Code
%>%
demo_minfind group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(3) %>%
print_table_conditional()
time | Nobs |
---|---|
2022 | 144 |
2021 | 137 |
2020 | 161 |
unit
Code
%>%
demo_minfind left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
RT | Rate | 10887 |
indic_de
Code
%>%
demo_minfind left_join(indic_de, by = "indic_de") %>%
group_by(indic_de, Indic_de) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
indic_de | Indic_de | Nobs |
---|---|---|
INFMORRT | Infant mortality rate | 2968 |
ENEOMORRT | Early neonatal mortality rate | 2052 |
NEOMORRT | Neonatal mortality rate | 2030 |
LFOEMORRT | Late foetal mortality rate | 1976 |
PERIMORRT | Perinatal mortality rate | 1861 |
geo
Code
%>%
demo_minfind left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
time
Code
%>%
demo_minfind group_by(time) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Table
2022
Code
%>%
demo_minfind filter(indic_de == "INFMORRT",
%in% c("2022")) %>%
time left_join(geo, by = "geo") %>%
#filter(geo %in% geo_eurozone) %>%
arrange(-values) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Evolution 2011-2021
Code
load_data("eurostat/geo_fr.RData")
<- demo_minfind %>%
table1 filter(indic_de == "INFMORRT",
%in% c("2011","2021")) %>%
time left_join(geo, by = "geo") %>%
filter(geo %in% geo_eurozone) %>%
spread(time, values) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(`Evolution 2011-2021` = round(`2021`-`2011`, 1)) %>%
arrange(-`Evolution 2011-2021`)
load_data("eurostat/geo.RData")
Evolution 2012-2022
Code
load_data("eurostat/geo_fr.RData")
<- demo_minfind %>%
table1 filter(indic_de == "INFMORRT",
%in% c("2012","2022")) %>%
time left_join(geo, by = "geo") %>%
filter(geo %in% geo_eurozone) %>%
spread(time, values) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(`Evolution 2012-2022` = round(`2022`-`2012`, 1)) %>%
arrange(-`Evolution 2012-2022`)
load_data("eurostat/geo.RData")
table1
# # A tibble: 19 × 5
# geo Geo `2012` `2022` `Evolution 2012-2022`
# <chr> <chr> <dbl> <dbl> <dbl>
# 1 LU Luxembourg 2.5 3.5 1
# 2 SI Slovénie 1.6 2.5 0.9
# 3 FR France 3.5 4 0.5
# 4 EL Grèce 2.9 3 0.1
# 5 MT Malte 5.3 5.3 0
# 6 DE Allemagne 3.3 3.2 -0.1
# 7 IE Irlande 3.5 3.2 -0.3
# 8 CY Chypre 3.5 3.1 -0.4
# 9 FI Finlande 2.4 2 -0.4
# 10 SK Slovaquie 5.8 5.4 -0.4
# 11 ES Espagne 3.1 2.6 -0.5
# 12 NL Pays-Bas 3.7 3.2 -0.5
# 13 IT Italie 2.9 2.3 -0.6
# 14 AT Autriche 3.2 2.4 -0.8
# 15 PT Portugal 3.4 2.6 -0.8
# 16 BE Belgique 3.8 2.9 -0.9
# 17 LT Lituanie 3.9 3 -0.9
# 18 EE Estonie 3.6 2.2 -1.4
# 19 LV Lettonie 6.3 2.4 -3.9
France
1996-
Not Log
Code
%>%
demo_minfind filter(geo %in% c("FR"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") +
scale_x_date(breaks = seq(1994, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(1, 10, 0.2),
labels = dollar_format(a = .1, pre = "", su = "‰"))
France, Germany, Italy
All
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_3flags +
scale_x_date(breaks = seq(1940, 2050, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 100, 10), 6, 8, 15, 25, seq(1, 5, 1)),
labels = dollar_format(a = .1, pre = "", su = "‰"))
1996-
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT"),
== "INFMORRT") %>%
indic_de %>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_3flags +
scale_x_date(breaks = seq(1940, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(1, 10, 0.2),
labels = dollar_format(a = .1, pre = "", su = "‰"))
France, Germany, Italy, Spain, Greece
All
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES", "EL"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_5flags +
scale_x_date(breaks = seq(1940, 2050, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 100, 10), 6, 8, 15, 25, seq(1, 5, 1)),
labels = dollar_format(a = .1, pre = "", su = "‰"))
1977-
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES", "EL"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1977-01-01")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_5flags +
scale_x_date(breaks = seq(1978, 2023, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20),
labels = dollar_format(a = .1, pre = "", su = "‰")) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
1985-
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES", "EL"),
== "INFMORRT") %>%
indic_de add_row(geo = "FR", time = "2022", values = 3.9 ) %>%
add_row(geo = "FR", time = "2023", values = 4 ) %>%
bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
filter(date >= as.Date("1985-01-01")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_5flags +
scale_x_date(breaks = seq(1941, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(2, 3, 5, 6, 8, 12, 15, 25),
labels = dollar_format(a = .1, pre = "", su = "‰")) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
France, Germany, Italy, Spain
Table 2020, 2021
See here
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES"),
== "INFMORRT",
indic_de %in% c("2020", "2021")) %>%
time print_table_conditional()
freq | unit | indic_de | geo | time | values |
---|---|---|---|---|---|
A | RT | INFMORRT | DE | 2020 | 3.1 |
A | RT | INFMORRT | DE | 2021 | 3.0 |
A | RT | INFMORRT | ES | 2020 | 2.6 |
A | RT | INFMORRT | ES | 2021 | 2.5 |
A | RT | INFMORRT | FR | 2020 | 3.6 |
A | RT | INFMORRT | FR | 2021 | 3.7 |
A | RT | INFMORRT | IT | 2020 | 2.4 |
A | RT | INFMORRT | IT | 2021 | 2.3 |
All
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_4flags +
scale_x_date(breaks = seq(1940, 2050, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = c(seq(0, 100, 10), 6, 8, 15, 25, seq(1, 5, 1)),
labels = dollar_format(a = .1, pre = "", su = "‰"))
1996-
Not Log
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_4flags +
scale_x_date(breaks = seq(1941, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(1, 10, 0.2),
labels = dollar_format(a = .1, pre = "", su = "‰"))
Log
Code
%>%
demo_minfind filter(geo %in% c("FR", "DE", "IT", "ES"),
== "INFMORRT") %>%
indic_de bind_rows(FAMILY_FAM16A_FRA) %>%
%>%
year_to_date filter(date >= as.Date("1996-01-01")) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot(.) + theme_minimal() + scale_color_identity() +
geom_line(aes(x = date, y = values, color = color)) +
xlab("") + ylab("Taux de mortalité infantile (‰)") + add_4flags +
scale_x_date(breaks = seq(1940, 2050, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(1, 10, 0.2),
labels = dollar_format(a = .1, pre = "", su = "‰"))
NUTS 0
Infant Mortality Rates
Code
%>%
demo_minfind filter(time == "2018",
== "INFMORRT") %>%
indic_de left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS0, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 10, 1),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Infant Mortality Rates")
Neonatal Mortality Rates
Code
%>%
demo_minfind filter(time == "2018",
== "NEOMORRT") %>%
indic_de left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS0, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 10, 1),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Neonatal Mortality Rates")