source | dataset | .html | .RData |
---|---|---|---|
2024-09-15 | 2024-09-15 | ||
2024-09-11 | 2024-09-15 |
Quarterly GDP and components - expenditure approach
Data - OECD
Info
Last
obsTime | Nobs |
---|---|
2024-Q2 | 291 |
REF_AREA
Code
%>%
QNA_EXPENDITURE_USD left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
UNIT_MEASURE
Code
%>%
QNA_EXPENDITURE_USD left_join(UNIT_MEASURE, by = "UNIT_MEASURE") %>%
group_by(UNIT_MEASURE, Unit_measure) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
UNIT_MEASURE | Unit_measure | Nobs |
---|---|---|
USD_PPP | US dollars, PPP converted | 167185 |
SECTOR
Code
%>%
QNA_EXPENDITURE_USD left_join(SECTOR, by = "SECTOR") %>%
group_by(SECTOR, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SECTOR | Sector | Nobs |
---|---|---|
S1 | Total economy | 111620 |
S1M | Households and non-profit institutions serving households (NPISH) | 27804 |
S13 | General government | 27761 |
ADJUSTMENT
Code
%>%
QNA_EXPENDITURE_USD left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
ADJUSTMENT | Adjustment | Nobs |
---|---|---|
Y | Calendar and seasonally adjusted | 167185 |
PRICE_BASE
Code
%>%
QNA_EXPENDITURE_USD left_join(PRICE_BASE, by = "PRICE_BASE") %>%
group_by(PRICE_BASE, Price_base) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
PRICE_BASE | Price_base | Nobs |
---|---|---|
LR | Chain linked volume (rebased) | 83804 |
V | Current prices | 83381 |
FREQ
Code
%>%
QNA_EXPENDITURE_USD left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
Q | Quarterly | 133914 |
A | Annual | 33271 |
TRANSACTION
Code
%>%
QNA_EXPENDITURE_USD left_join(TRANSACTION, by = "TRANSACTION") %>%
group_by(TRANSACTION, Transaction) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TRANSACTION | Transaction | Nobs |
---|---|---|
P3 | Final consumption expenditure | 55565 |
B1GQ | Gross domestic product | 28257 |
P6 | Exports of goods and services | 27801 |
P7 | Imports of goods and services | 27801 |
P51G | Gross fixed capital formation | 27761 |
U.S., Europe, France, Germany
All
Code
%>%
QNA_EXPENDITURE_USD filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "B1GQ",
TRANSACTION == "LR",
PRICE_BASE == "Y",
ADJUSTMENT == "S1") %>%
SECTOR %>%
quarter_to_date arrange(desc(date)) %>%
rename(LOCATION = REF_AREA) %>%
left_join(QNA_var$LOCATION, by = "LOCATION") %>%
mutate(Location = ifelse(LOCATION == "EA20", "Europe", Location)) %>%
group_by(Location) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2007-04-01")]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(LOCATION != "DEU", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1900, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(5, 200, 5))
1995-
Code
%>%
QNA_EXPENDITURE_USD filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "B1GQ",
TRANSACTION == "LR",
PRICE_BASE == "Y",
ADJUSTMENT == "S1") %>%
SECTOR %>%
quarter_to_date arrange(desc(date)) %>%
rename(LOCATION = REF_AREA) %>%
left_join(QNA_var$LOCATION, by = "LOCATION") %>%
filter(date >= as.Date("1995-01-01")) %>%
mutate(Location = ifelse(LOCATION == "EA20", "Europe", Location)) %>%
group_by(Location) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2007-04-01")]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(LOCATION != "DEU", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1995, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
1999-
Tous
Code
%>%
QNA_EXPENDITURE_USD filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "B1GQ",
TRANSACTION == "LR",
PRICE_BASE == "Y",
ADJUSTMENT == "S1") %>%
SECTOR %>%
quarter_to_date rename(LOCATION = REF_AREA) %>%
left_join(QNA_var$LOCATION, by = "LOCATION") %>%
filter(date >= as.Date("1999-01-01")) %>%
mutate(Location = ifelse(LOCATION == "EA20", "Europe", Location)) %>%
group_by(Location) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2007-04-01")]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(LOCATION != "DEU", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
Base 100 = 1999
Code
%>%
QNA_EXPENDITURE_USD filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "B1GQ",
TRANSACTION == "LR",
PRICE_BASE == "Y",
ADJUSTMENT == "S1") %>%
SECTOR %>%
quarter_to_date rename(LOCATION = REF_AREA) %>%
left_join(QNA_var$LOCATION, by = "LOCATION") %>%
filter(date >= as.Date("1999-01-01")) %>%
mutate(Location = ifelse(LOCATION == "EA20", "Europe", Location)) %>%
group_by(Location) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("1999-01-01")]) %>%
left_join(colors, by = c("Location" = "country")) %>%
mutate(color = ifelse(LOCATION != "DEU", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))