source | dataset | .html | .RData |
---|---|---|---|
oecd | QNA_EXPENDITURE_CAPITA | 2024-12-28 | 2025-01-02 |
Quarterly National Accounts, GDP Per Capita
Data - OECD
Info
Last
obsTime
obsTime | Nobs |
---|---|
2024-Q3 | 76 |
obsValue
FREQ
Code
%>%
QNA_EXPENDITURE_CAPITA left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Freq | Nobs |
---|---|---|
Q | Quarterly | 11772 |
A | Annual | 3031 |
REF_AREA
Code
%>%
QNA_EXPENDITURE_CAPITA left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TRANSACTION
Code
%>%
QNA_EXPENDITURE_CAPITA left_join(TRANSACTION, by = "TRANSACTION") %>%
group_by(TRANSACTION, Transaction) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TRANSACTION | Transaction | Nobs |
---|---|---|
B1GQ_POP | Gross domestic product, per capita | 14803 |
PRICE_BASE
Code
%>%
QNA_EXPENDITURE_CAPITA left_join(PRICE_BASE, by = "PRICE_BASE") %>%
group_by(PRICE_BASE, Price_base) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
PRICE_BASE | Price_base | Nobs |
---|---|---|
V | Prix courants | 7404 |
LR | Volumes chaînés (rebasés) | 7399 |
U.S., Europe
Tous
Code
metadata_load_fr("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE %>%
quarter_to_date left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
#mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
# #003399, #3C3B6E
scale_color_manual(values = c("#B22234", "#003399")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#B22234', alpha = 0.1) +
geom_rect(data = cepr_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#003399', alpha = 0.1) +
scale_x_date(breaks = c(seq(1940, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.26, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 1000, 20))
1995-
Code
metadata_load_fr("REF_AREA", "CL_AREA")
<- QNA_EXPENDITURE_CAPITA %>%
plot filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
#mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
# #003399, #3C3B6E
scale_color_manual(values = c("#B22234", "#003399")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#B22234', alpha = 0.1) +
geom_rect(data = cepr_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#003399', alpha = 0.1) +
scale_x_date(breaks = c(seq(1994, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.26, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 200, 5))
plot
Code
save(plot, file = "QNA_EXPENDITURE_CAPITA_files/figure-html/USA-EA20-1995-1.RData")
1999-
Flags
Code
metadata_load("REF_AREA", "CL_AREA")
<- QNA_EXPENDITURE_CAPITA %>%
plot filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
#mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("GDP per capita (100 = 1999Q1)") +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
# #003399, #3C3B6E
scale_color_manual(values = c("#003399", "#B22234")) + add_2flags +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#B22234', alpha = 0.1) +
geom_rect(data = cepr_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#003399', alpha = 0.1) +
scale_x_date(breaks = c(seq(1999, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.26, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 200, 5))
plot
No flags
Code
metadata_load_fr("REF_AREA", "CL_AREA")
<- QNA_EXPENDITURE_CAPITA %>%
plot filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
%>%
ungroup add_row(obsValue = 127.9913, date = as.Date("2024-04-01"), Ref_area = "Zone euro") %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
#mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
# #003399, #3C3B6E
scale_color_manual(values = c("#B22234", "#003399")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#B22234', alpha = 0.1) +
geom_rect(data = cepr_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#003399', alpha = 0.1) +
scale_x_date(breaks = c(seq(1999, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.26, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 200, 5)) +
labs(caption = "")
plot
Code
save(plot, file = "QNA_EXPENDITURE_CAPITA_files/figure-html/USA-EA20-1999-1.RData")
2000-
Code
metadata_load_fr("REF_AREA", "CL_AREA")
<- QNA_EXPENDITURE_CAPITA %>%
plot filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE %>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(REF_AREA, by = "REF_AREA") %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (2000T1 = 100)") +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
# #003399, #3C3B6E
scale_color_manual(values = c("#B22234", "#003399")) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#B22234', alpha = 0.1) +
geom_rect(data = cepr_recessions %>%
filter(Peak > as.Date("1999-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = '#003399', alpha = 0.1) +
scale_x_date(breaks = c(seq(2000, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.26, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(50, 200, 5))
save(plot, file = "QNA_EXPENDITURE_CAPITA_files/figure-html/USA-EA20-2000-1.RData")
plot
France, Portugal, Spain, Greece, Italy
1999-
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("FRA", "PRT", "ESP", "GRC", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2008-01-01")]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_5flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
2008-
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("FRA", "PRT", "ESP", "GRC", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2008-01-01")) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2008-01-01")]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (2008 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_5flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
U.S., Europe, France, Germany
Tous
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1900, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(100, 1000, 20))
1995-
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
U.S., Europe, France, Italy
Tous
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1900, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(100, 1000, 20))
1995-
Code
metadata_load("REF_AREA", "CL_AREA")
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1995 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
1999-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
2000-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
Avril 2017-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "FRA", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2017-04-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (Avril 2017 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
Oher graphs
1999-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "ITA"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("1999-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (1999 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_3flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
1999-
french
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("PIB par habitant (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(2000, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
english
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("GDP per capita (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(2000, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
US, Europe, Greece
2000-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "GRC", "ESP"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area),
Ref_area = ifelse(REF_AREA == "OECD", "OECD members", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2008-01-01")]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
mutate(color = ifelse(REF_AREA == "ESP", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("GDP per capita (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(2000, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))
US, Europe, OECD
2000-
Code
%>%
QNA_EXPENDITURE_CAPITA filter(REF_AREA %in% c("USA", "EA20", "OECD"),
== "Q",
FREQ == "LR") %>%
PRICE_BASE left_join(REF_AREA, by = "REF_AREA") %>%
%>%
quarter_to_date filter(date >= as.Date("2000-01-01")) %>%
rename(Ref_area = Ref_area) %>%
mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area),
Ref_area = ifelse(REF_AREA == "OECD", "OECD members", Ref_area)) %>%
group_by(Ref_area) %>%
arrange(date) %>%
mutate(obsValue = 100 * obsValue / obsValue[date == as.Date("2008-01-01")]) %>%
left_join(colors, by = c("Ref_area" = "country")) %>%
mutate(color = ifelse(REF_AREA == "EA20", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("GDP per capita (2000 = 100)") +
geom_line(aes(x = date, y = obsValue, color = color)) + add_3flags +
scale_color_identity() +
scale_x_date(breaks = c(seq(2000, 2100, 2)) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(50, 200, 5))