Quarterly GDP and components - expenditure approach

Data - OECD

Info

source dataset Title .html .rData
oecd QNA_EXPENDITURE_CAPITA Quarterly National Accounts, GDP Per Capita 2026-01-11 2026-01-09
oecd QNA_EXPENDITURE_NATIO_CURR Quarterly GDP and components - expenditure approach 2026-01-11 2026-01-09

Last

obsTime Nobs
2025-Q3 3575

PRICE_BASE

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  left_join(PRICE_BASE, by = "PRICE_BASE") %>%
  group_by(PRICE_BASE, Price_base) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
PRICE_BASE Price_base Nobs
V Current prices 354432
L Chain linked volume 272479
Q Constant prices 20306

REF_AREA

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

TRANSACTION

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  left_join(TRANSACTION, by = "TRANSACTION") %>%
  group_by(TRANSACTION, Transaction) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
TRANSACTION Transaction Nobs
P3 Final consumption expenditure 149742
P51G Gross fixed capital formation 40875
B1GQ Gross domestic product 33914
P6 Exports of goods and services 33673
P7 Imports of goods and services 33673
B11 External balance of goods and services 33205
P5 Gross capital formation 31257
P61 Exports of goods 29807
P62 Exports of services 29807
P71 Imports of goods 29807
P72 Imports of services 29807
P3T5 Domestic demand 23319
P31 Individual consumption expenditure 21496
P32 Collective consumption expenditure 21496
P5M Changes in inventories and acquisitions less disposals of valuables 20992
P41 Actual individual consumption 20592
P52 Changes in inventories 20135
YA0 Statistical discrepancy (expenditure approach) 13510
PPP_B1GQ Purchasing Power Parities for GDP 12625
P53 Acquisitions less disposals of valuables 12083
P3_P51G Final domestic demand excluding inventories 3561
P3T6 Total demand 1841

ACTIVITY

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  left_join(ACTIVITY, by = "ACTIVITY") %>%
  group_by(ACTIVITY, Activity) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
ACTIVITY Activity Nobs
_Z Not applicable 521875
_T Total - all activities 125342

U.S. VS Europe

Table

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20"),
         FREQ == "Q",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1",
         obsTime %in% c("1999-Q1", "2023-Q4")) %>%
  left_join(TRANSACTION, by = "TRANSACTION") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = 4*obsValue/population) %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(REF_AREA, TRANSACTION, Transaction, obsTime, obsValue) %>%
  spread(obsTime, obsValue) %>%
  mutate(change = `2023-Q4`-`1999-Q1`) %>%
  select(REF_AREA, TRANSACTION, Transaction, change) %>%
  spread(REF_AREA, change) %>%
  print_table_conditional()
TRANSACTION Transaction EA20 USA
B11 External balance of goods and services 1.528137 -1.7556539
B1GQ Gross domestic product 8.158186 20.1946805
P3 Final consumption expenditure 5.298953 16.9207077
P3_P51G Final domestic demand excluding inventories NA 21.9817644
P3T5 Domestic demand NA 21.9736954
P5 Gross capital formation 1.286673 5.1667210
P51G Gross fixed capital formation 1.720997 5.1349370
P52 Changes in inventories NA -0.2245078
P5M Changes in inventories and acquisitions less disposals of valuables NA -0.2245078
P6 Exports of goods and services 9.986565 3.3467965
P61 Exports of goods 6.180214 2.2405776
P62 Exports of services 3.857948 1.1329026
P7 Imports of goods and services 8.458427 5.1024547
P71 Imports of goods 5.051708 4.1584904
P72 Imports of services 3.557045 0.9457240
YA0 Statistical discrepancy (expenditure approach) NA -0.2418241

P3 - Final consumption expenditure / capita

Code
metadata_load_fr("REF_AREA", "CL_AREA", data = QNA_EXPENDITURE_NATIO_CURR_var)
plot <- QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20"),
         FREQ == "Q",
         TRANSACTION == "P3",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Consommation par habitant (1999T1 = 100)") +
  geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
  scale_color_manual(values = c("#B22234", "#003399")) +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.26, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(50, 200, 5)) +
  geom_rect(data = nber_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
            fill = '#B22234', alpha = 0.1)  +
  geom_rect(data = cepr_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf), 
            fill = '#003399', alpha = 0.1) +
  labs(caption = "Source: OCDE, Comptes Trimestriels, Volumes chaînés")

plot

Code
save(plot, file = "QNA_EXPENDITURE_NATIO_CURR_files/figure-html/USA-EA20-1999-percapita-1.RData")

U.S., Europe, France, Germany

B1GQ - GDP

1995-

Code
metadata_load("REF_AREA", "CL_AREA", data = QNA_EXPENDITURE_NATIO_CURR_var)
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "B1GQ",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1995-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1995, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

1999-

Total

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "B1GQ",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

Per Capita

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "B1GQ",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

P51G - Gross fixed capital formation

1995-

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P51G",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1995-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1995, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 500, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

1999-

Total

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P51G",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

Per Capita

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P51G",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

P3 - Final consumption expenditure

All

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P3",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1900, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(20, 600, 20))

1995-

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P3",
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  arrange(desc(date)) %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1995-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1995, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

1999-

Total

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P3",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_4flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.26, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

Per Capita

Code
metadata_load_fr("REF_AREA", "CL_AREA", data = QNA_EXPENDITURE_NATIO_CURR_var)
plot <- QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P3",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y",
         SECTOR == "S1") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Zone euro", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Consommation par habitant (1999T1 = 100)") +
  geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
  scale_color_manual(values = c("#000000", "#B22234", "#808080", "#003399")) +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = c(0.26, 0.8),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(50, 200, 5))  +
  geom_rect(data = nber_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
            fill = '#B22234', alpha = 0.1)  +
  geom_rect(data = cepr_recessions %>%
              filter(Peak > as.Date("1999-01-01")), 
            aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf), 
            fill = '#003399', alpha = 0.1)  +
  labs(caption = "Source: OCDE, Comptes Trimestriels, Volumes chaînés")


save(plot, file = "QNA_EXPENDITURE_NATIO_CURR_files/figure-html/USA-EA20-FRA-DEU-1999-percapita-1.RData")

plot

P31 - Individual consumption expenditure

Code
metadata_load("REF_AREA", "CL_AREA", data = QNA_EXPENDITURE_NATIO_CURR_var)
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P31",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_3flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

P32 - Collective consumption expenditure

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P32",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_3flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

P41 - Actual individual consumption

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P41",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_2flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

P3T5 - Domestic demand

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA", "EA20", "FRA", "DEU"),
         FREQ == "Q",
         TRANSACTION == "P3T5",
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y") %>%
  left_join(QNA_POP_EMPNC_extract, by = c("obsTime", "REF_AREA")) %>%
  mutate(obsValue = obsValue/population) %>%
  quarter_to_date %>%
  
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(date >= as.Date("1999-01-01")) %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  arrange(date) %>%
  mutate(obsValue = 100 * obsValue / obsValue[1]) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(Ref_area != "DEU", color2, color)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("") +
  geom_line(aes(x = date, y = obsValue, color = color)) + add_3flags +
  scale_color_identity() +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(50, 200, 5)) + 
  geom_label_repel(data = . %>% filter(date == max(date)),
             aes(x = date, y = obsValue, label = round(obsValue, 1), color = color))

Net exports

Eurozone, US, France, Germany

Tous

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20", "USA", "DEU", "FRA"),
         FREQ == "Q",
         TRANSACTION %in% c("B11", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(-OBS_STATUS) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  filter(date >= as.Date("1970-01-01")) %>%
  transmute(date, Ref_area, obsValue = B11/B1GQ) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = obsValue, color = color)) +
  theme_minimal() + xlab("") + ylab("") + scale_color_identity() + add_4flags +
  scale_x_date(breaks = c(seq(1970, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  geom_hline(yintercept = 0, linetype = "dashed")

1990-

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20", "USA", "DEU", "FRA"),
         FREQ == "Q",
         TRANSACTION %in% c("B11", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  left_join(PRICE_BASE, by = "PRICE_BASE") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(-OBS_STATUS) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  filter(date >= as.Date("1990-01-01")) %>%
  transmute(date, Ref_area, obsValue = B11/B1GQ) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  ggplot + geom_line(aes(x = date, y = obsValue, color = color)) +
  theme_minimal() + xlab("") + ylab("") + scale_color_identity() + add_4flags +
  scale_x_date(breaks = c(seq(1970, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  geom_hline(yintercept = 0, linetype = "dashed")

Eurozone, US

Tous

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20", "USA"),
         FREQ == "Q",
         TRANSACTION %in% c("B11", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  transmute(date, REF_AREA, Ref_area, obsValue = B11/B1GQ) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
  ggplot + geom_line(aes(x = date, y = obsValue, color = color)) +
  theme_minimal() + xlab("") + ylab("") + scale_color_identity() + add_2flags +
  scale_x_date(breaks = c(seq(1920, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  geom_hline(yintercept = 0, linetype = "dashed")

1970-

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20", "USA"),
         FREQ == "Q",
         TRANSACTION %in% c("B11", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  filter(date >= as.Date("1970-01-01")) %>%
  transmute(date, REF_AREA, Ref_area, obsValue = B11/B1GQ) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
  ggplot + geom_line(aes(x = date, y = obsValue, color = color)) +
  theme_minimal() + xlab("") + ylab("") + scale_color_identity() + add_2flags +
  scale_x_date(breaks = c(seq(1970, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  geom_hline(yintercept = 0, linetype = "dashed")

1990-

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20", "USA"),
         FREQ == "Q",
         TRANSACTION %in% c("B11", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  mutate(Ref_area = ifelse(REF_AREA == "EA20", "Europe", Ref_area)) %>%
  group_by(Ref_area) %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  filter(date >= as.Date("1995-01-01")) %>%
  transmute(date, REF_AREA, Ref_area, obsValue = B11/B1GQ) %>%
  left_join(colors, by = c("Ref_area" = "country")) %>%
  mutate(color = ifelse(REF_AREA == "USA", color2, color)) %>%
  ggplot + geom_line(aes(x = date, y = obsValue, color = color)) +
  theme_minimal() + xlab("") + ylab("") + scale_color_identity() + add_2flags +
  scale_x_date(breaks = c(seq(1970, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  geom_hline(yintercept = 0, linetype = "dashed")

Exports and Imports as a % of GDP

EA 20

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("EA20"),
         FREQ == "Q",
         TRANSACTION %in% c("P6", "P7", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "L",
         ADJUSTMENT == "Y") %>%
  select_if(~ n_distinct(.) > 1) %>%
  select(-OBS_STATUS) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  transmute(date, `Exports (% of GDP)` = P6/B1GQ, `Imports (% of GDP)` = P7/B1GQ) %>%
  gather(variable, value, -date) %>%
  ggplot + geom_line(aes(x = date, y = value, color = variable)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = c(seq(1999, 2100, 5), seq(1997, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank())

USA

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("USA"),
         FREQ == "Q",
         TRANSACTION %in% c("P6", "P7", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  transmute(date, `Exports (% of GDP)` = P6/B1GQ, `Imports (% of GDP)` = P7/B1GQ) %>%
  gather(variable, value, -date) %>%
  ggplot + geom_line(aes(x = date, y = value, color = variable)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = c(seq(1940, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank())

Germany

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("DEU"),
         FREQ == "Q",
         TRANSACTION %in% c("P6", "P7", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  transmute(date, `Exports (% of GDP)` = P6/B1GQ, `Imports (% of GDP)` = P7/B1GQ) %>%
  gather(variable, value, -date) %>%
  ggplot + geom_line(aes(x = date, y = value, color = variable)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = c(seq(1940, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank())

France

Code
QNA_EXPENDITURE_NATIO_CURR %>%
  filter(REF_AREA %in% c("FRA"),
         FREQ == "Q",
         TRANSACTION %in% c("P6", "P7", "B1GQ"),
         # L = Chain linked volume
         PRICE_BASE == "V",
         ADJUSTMENT == "Y") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(TRANSACTION, obsValue) %>%
  quarter_to_date() %>%
  transmute(date, `Exports (% of GDP)` = P6/B1GQ, `Imports (% of GDP)` = P7/B1GQ) %>%
  gather(variable, value, -date) %>%
  ggplot + geom_line(aes(x = date, y = value, color = variable)) +
  theme_minimal() + xlab("") + ylab("") +
  scale_x_date(breaks = c(seq(1940, 2100, 5)) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_y_continuous(breaks = 0.01*seq(-100, 100, 2),
                labels = percent_format(acc = 1)) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank())