PIB et ses composantes - Equilibre emplois-ressources - volumes aux prix de l’année précédente chaînés - t_pib_vol
Data - Insee
Info
Info
png
Code
ig_b("insee", "t_pib_vol")
variable
Code
%>%
t_pib_vol left_join(variable, by = "variable") %>%
group_by(variable, Variable1, Variable2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
variable | Variable1 | Variable2 | Nobs |
---|---|---|---|
P3 | Dépenses de consommation des : | Total | 304 |
P31G | Dépenses de consommation des : | APU (individual.) | 304 |
P32G | Dépenses de consommation des : | APU (collectives) | 304 |
P3M | Dépenses de consommation des : | ménages | 304 |
P3P | Dépenses de consommation des : | ISBLSM | 304 |
P51 | FBCF des : | Total | 304 |
P51B | FBCF des : | entreprises financières | 304 |
P51G | FBCF des : | APU | 304 |
P51M | FBCF des : | ménages | 304 |
P51P | FBCF des : | ISBLSM | 304 |
P51S | FBCF des : | entreprises non financières | 304 |
P6 | Exportations | NA | 304 |
P7 | Importations | NA | 304 |
PIB | Produit intérieur brut | NA | 304 |
PIB
Code
%>%
t_pib_vol filter(variable == "PIB") %>%
select(-variable) %>%
print_table_conditional()
PIB
propension à importer = M(2016) - M(2014)/ (PIB+M)(2016)- (PIB+M)(2014)
Code
%>%
t_pib_vol filter(variable %in% c("PIB", "P7")) %>%
spread(variable, value) %>%
mutate(PIB_P7 = PIB+P7) %>%
mutate(import_propensity = (P7 - lag(P7, 10))/(PIB_P7 - lag(PIB_P7, 10))) %>%
ggplot() + geom_line(aes(x = date, y = import_propensity)) +
xlab("") + ylab("Propension à importeer (%)") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.2)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 10),
labels = scales::percent_format(accuracy = 1))
Code
%>%
t_pib_vol filter(variable %in% c("PIB", "P7", "P3M")) %>%
spread(variable, value) %>%
mutate(PIB_P7 = PIB+P7) %>%
mutate(import_propensity = (P3M - lag(P3M, 10))/(PIB_P7 - lag(PIB_P7, 10))) %>%
ggplot() + geom_line(aes(x = date, y = import_propensity)) +
xlab("") + ylab("Propension à consommer (%)") + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.2)) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date(),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 10),
labels = scales::percent_format(accuracy = 1),
limits = c(-2, 1.5))
Déflateur
P3M, P51M
Tous
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
left_join(variable, by = "variable") %>%
rename(vol = value) %>%
left_join(t_pib_val, by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
#filter(date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = paste(Variable1, Variable2))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 10000, 100))
1975-
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
left_join(variable, by = "variable") %>%
rename(vol = value) %>%
left_join(t_pib_val, by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1975-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = paste(Variable1, Variable2))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10))
1990-
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
left_join(variable, by = "variable") %>%
rename(vol = value) %>%
left_join(t_pib_val, by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = paste(Variable1, Variable2))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10))
1999-
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
left_join(variable, by = "variable") %>%
rename(vol = value) %>%
left_join(t_pib_val, by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
mutate(Variable = case_when(variable == "P3M" ~ "Déflateur de la consommation des ménages",
== "P51M" ~ "Déflateur de l'investissement des ménages")) %>%
variable + theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color =Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = deflateur, color = Variable, label = round(deflateur, 1)))
1999-2024T1
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
left_join(variable, by = "variable") %>%
rename(vol = value) %>%
left_join(t_pib_val, by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1999-01-01"),
<= as.Date("2024-01-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
mutate(Variable = case_when(variable == "P3M" ~ "Déflateur de la consommation des ménages",
== "P51M" ~ "Déflateur de l'investissement des ménages")) %>%
variable + theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color =Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label(data = . %>% filter(date == max(date)),
aes(x = date, y = deflateur, color = Variable, label = round(deflateur, 1)))
P3M, P51M, P3M, P51M
1975-
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date) %>%
rename(vol = value) %>%
left_join(t_pib_val %>%
filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date),
by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1975-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10))
1990-
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date) %>%
rename(vol = value) %>%
left_join(t_pib_val %>%
filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date),
by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10))
1999-
All
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date) %>%
rename(vol = value) %>%
left_join(t_pib_val %>%
filter(variable %in% c("P3M", "P51M")) %>%
spread(variable, value) %>%
mutate(`P3M + P51M` = P3M + P51M) %>%
gather(variable, value, -date),
by = c("date", "variable")) %>%
rename(val = value) %>%
mutate(deflateur = val/vol) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(deflateur = 100*deflateur/deflateur[1]) %>%
+ theme_minimal() + ylab("") + xlab("") +
ggplot geom_line(aes(x = date, y = deflateur, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10)) +
geom_label_repel(data = . %>% filter(date == max(date)),
aes(x = date, y = deflateur, color = variable, label = round(deflateur, 1)))
Consommation
All
Linear
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "PIB", "P3")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 50))
Log
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "PIB", "P3")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 50))
2017-T2
Log
Code
%>%
t_pib_vol filter(variable %in% c("P3M", "PIB", "P3"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 2))