PIB et ses composants - Equilibre emplois-ressources - valeurs aux prix courants
Data - Insee
Info
LAST_COMPILE
LAST_COMPILE |
---|
2025-05-24 |
Last
date | Nobs |
---|---|
2024-10-01 | 15 |
Info
Table 2024T2 - valeur
Code
ig_b("insee", "t_pib_val")
Table 2024T2 - volume
Code
ig_b("insee", "t_pib_vol")
Sources
Code
ig_b("insee", "revpe234", "table1")
variable
Code
%>%
t_pib_val left_join(variable, by = "variable") %>%
group_by(variable, Variable1, Variable2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
variable | Variable1 | Variable2 | Nobs |
---|---|---|---|
P3 | Dépenses de consommation des : | Total | 304 |
P31G | Dépenses de consommation des : | APU (individual.) | 304 |
P32G | Dépenses de consommation des : | APU (collectives) | 304 |
P3M | Dépenses de consommation des : | ménages | 304 |
P3P | Dépenses de consommation des : | ISBLSM | 304 |
P51 | FBCF des : | Total | 304 |
P51B | FBCF des : | entreprises financières | 304 |
P51G | FBCF des : | APU | 304 |
P51M | FBCF des : | ménages | 304 |
P51P | FBCF des : | ISBLSM | 304 |
P51S | FBCF des : | entreprises non financières | 304 |
P54 | Variations de stocks (*) | NA | 304 |
P6 | Exportations | NA | 304 |
P7 | Importations | NA | 304 |
PIB | Produit intérieur brut | NA | 304 |
PIB
Code
%>%
t_pib_val filter(variable == "PIB") %>%
select(-variable) %>%
print_table_conditional()
D’où vient la croissance depuis 2021-T2 ?
Log
Code
%>%
t_pib_val filter(variable %in% c("P3M", "PIB", "P6", "P51", "P31G"),
>= as.Date("2021-04-01")) %>%
date left_join(variable) %>%
group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
mutate(Variable2 = ifelse(is.na(Variable2), "", Variable2)) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = paste(Variable1, Variable2))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.7)) +
scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
Consommation
All
Linear
Code
%>%
t_pib_val filter(variable %in% c("P3M", "PIB", "P3")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 1000, 50))
Log
Code
%>%
t_pib_val filter(variable %in% c("P3M", "PIB", "P3")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 50))
2017-T2
Log
Code
%>%
t_pib_val filter(variable %in% c("P3M", "PIB", "P3"),
>= as.Date("2017-04-01")) %>%
date group_by(variable) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 5))
Investissement et taux de marge
All
Code
%>%
t_pib_val filter(variable %in% c("P51", "PIB")) %>%
spread(variable, value) %>%
mutate(date,
value = P51/PIB,
Variable = "Investissement (% du PIB)") %>%
bind_rows(t_txmargesnf_val %>%
filter(variable == "taux_marge") %>%
mutate(Variable = "Taux de marge") %>%
mutate(value = value/100)) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1)) +
geom_rect(data = data_frame(start = as.Date("1983-01-01"),
end = as.Date("1992-12-31")),
aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf),
fill = viridis(4)[4], alpha = 0.2)
1960-
Code
%>%
t_pib_val filter(variable %in% c("P51", "PIB")) %>%
spread(variable, value) %>%
mutate(date,
value = P51/PIB,
Variable = "Investissement (% du PIB)") %>%
bind_rows(t_txmargesnf_val %>%
filter(variable == "taux_marge") %>%
mutate(Variable = "Taux de marge") %>%
mutate(value = value/100)) %>%
filter(date >= as.Date("1960-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 10) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1)) +
geom_rect(data = data_frame(start = as.Date("1983-01-01"),
end = as.Date("1992-12-31")),
aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf),
fill = viridis(4)[4], alpha = 0.2)
1980-
Code
%>%
t_pib_val filter(variable %in% c("P51", "PIB")) %>%
spread(variable, value) %>%
mutate(date,
value = P51/PIB,
Variable = "Investissement (% du PIB)") %>%
bind_rows(t_txmargesnf_val %>%
filter(variable == "taux_marge") %>%
mutate(Variable = "Taux de marge") %>%
mutate(value = value/100)) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.92)) +
scale_x_date(breaks = seq(1950, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1)) +
geom_rect(data = data_frame(start = as.Date("1983-01-01"),
end = as.Date("1992-12-31")),
aes(xmin = start, xmax = end, ymin = -Inf, ymax = +Inf),
fill = viridis(4)[4], alpha = 0.2)
2000-
Code
%>%
t_pib_val filter(variable %in% c("P51", "PIB")) %>%
spread(variable, value) %>%
mutate(date,
value = P51/PIB,
Variable = "Investissement (% du PIB)") %>%
bind_rows(t_txmargesnf_val %>%
filter(variable == "taux_marge") %>%
mutate(Variable = "Taux de marge") %>%
mutate(value = value/100)) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))