source | dataset | Title | Download | Compile |
---|---|---|---|---|
eurostat | phillips | Phillips curves | NA | 2023-04-10 |
eurostat | tipsna62 | Employees, domestic concept - annual data | 2023-04-01 | 2023-03-26 |
fred | phillips | Phillips curves | 2023-03-23 | 2023-04-10 |
ilo | phillips | Phillips curves | NA | 2023-01-10 |
oecd | phillips | Phillips curves | NA | 2023-04-10 |
wdi | phillips | Phillips curves | NA | 2022-11-18 |
LAST_COMPILE |
---|
2023-04-10 |
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("HKG"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("HK")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Hong Kong's Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("HKG"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("HK")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
filter(date >= as.Date("1976-01-01")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Hong Kong's Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("DZA"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("DZ")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
filter(date >= as.Date("1976-01-01")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Hong Kong's Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "grey")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("BEN"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("BJ")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
filter(date >= as.Date("1976-01-01")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Hong Kong's Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "grey")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("TGO"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("TG")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
filter(date >= as.Date("1976-01-01")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("MLI"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(date, value = obs_value) %>%
mutate(variable = "Unemployment Rate") %>%
bind_rows(NY.GDP.DEFL.KD.ZG %>%
filter(iso2c %in% c("ML")) %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(date, value = NY.GDP.DEFL.KD.ZG) %>%
mutate(variable = "Inflation (GDP Deflator)")) %>%
filter(date >= as.Date("1976-01-01")) %>%
ggplot(.) + geom_line() + theme_minimal() +
aes(x = date, y = value/100, color = variable) +
xlab("") + ylab("Inflation or Unemployment") +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.85, 0.85)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 2),
labels = percent_format(a = 1)) +
geom_vline(xintercept = as.Date("1983-01-01"), linetype = "dashed", color = viridis(4)[3]) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("ARG"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(iso3c = ref_area, date, UNE_DEAP_SEX_AGE_RT_A = obs_value) %>%
left_join(NY.GDP.DEFL.KD.ZG %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(iso3c, date, NY.GDP.DEFL.KD.ZG),
by = c("date", "iso3c")) %>%
gather(VARIABLE, value, - date, -iso3c) %>%
mutate(Variable = case_when(VARIABLE == "NY.GDP.DEFL.KD.ZG" ~ "Inflation (GDP Deflator)",
== "UNE_DEAP_SEX_AGE_RT_A" ~ "Unemployment Rate")) %>%
VARIABLE ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value/100, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.15)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "grey")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("ARG"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(iso3c = ref_area, date, UNE_DEAP_SEX_AGE_RT_A = obs_value) %>%
left_join(NY.GDP.DEFL.KD.ZG %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(iso3c, date, NY.GDP.DEFL.KD.ZG),
by = c("date", "iso3c")) %>%
gather(VARIABLE, value, - date, -iso3c) %>%
filter(date >= as.Date("1995-01-01")) %>%
mutate(Variable = case_when(VARIABLE == "NY.GDP.DEFL.KD.ZG" ~ "Inflation (GDP Deflator)",
== "UNE_DEAP_SEX_AGE_RT_A" ~ "Unemployment Rate")) %>%
VARIABLE ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value/100, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.15)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "grey")
%>%
UNE_DEAP_SEX_AGE_RT_A filter(ref_area %in% c("LUX"),
== "SEX_T",
sex == "AGE_AGGREGATE_TOTAL") %>%
classif1 mutate(date = paste0(time, "-12-31") %>% as.Date) %>%
select(iso3c = ref_area, date, UNE_DEAP_SEX_AGE_RT_A = obs_value) %>%
left_join(NY.GDP.DEFL.KD.ZG %>%
mutate(date = paste0(year, "-12-31") %>% as.Date) %>%
select(iso3c, date, NY.GDP.DEFL.KD.ZG),
by = c("date", "iso3c")) %>%
gather(VARIABLE, value, - date, -iso3c) %>%
mutate(Variable = case_when(VARIABLE == "NY.GDP.DEFL.KD.ZG" ~ "Inflation (GDP Deflator)",
== "UNE_DEAP_SEX_AGE_RT_A" ~ "Unemployment Rate")) %>%
VARIABLE ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value/100, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.8, 0.15)) +
scale_x_date(breaks = seq(1900, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 10000, 1),
labels = percent_format(a = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "grey")