Code
%>%
tipsna62 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Data - Eurostat
%>%
tipsna62 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
List of Countries: Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, The Netherlands, Portugal, Slovakia, Slovenia and Spain
%>%
tipsna62 filter(geo %in% c("AT", "BE", "CY", "EE", "FI", "FR", "DE", "EL", "IE",
"IT", "LV", "LT", "LU", "MT", "NL", "PT", "SK", "SI", "ES")) %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
tipsna62 filter(!(geo %in% c("AT", "BE", "CY", "EE", "FI", "FR", "DE", "EL", "IE",
"IT", "LV", "LT", "LU", "MT", "NL", "PT", "SK", "SI", "ES"))) %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
tipsna62 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
THS_PER | Thousand persons | 783 |
PCH_PRE_PER | Percentage change on previous period (based on persons) | 761 |
%>%
tipsna62 left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
na_item | Na_item | Nobs |
---|---|---|
SAL_DC | Employees domestic concept | 1544 |
%>%
tipsna62 filter(geo %in% c("FR", "DE", "PT"),
== "THS_PER") %>%
unit select(geo, time, values) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = values/100, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Employees domestic concept")
%>%
tipsna62 filter(geo %in% c("DE", "FR", "PT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("DE", "FR", "PT")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp/emp, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 100, 5),
labels = dollar_format(suffix = "K€", prefix = "")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Compensation of employees Per Employee")
%>%
tipsna62 filter(geo %in% c("FR", "IT", "MT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("IT", "FR", "MT")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp/emp, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 100, 5),
labels = dollar_format(suffix = "K€", prefix = "")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Compensation of employees Per Employee")
%>%
tipsna62 filter(geo %in% c("DK", "SE", "PL"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("DK", "SE", "PL")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp/emp, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(5)[1:4]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 100, 5),
labels = dollar_format(suffix = "K€", prefix = "")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Compensation of employees Per Employee")
%>%
tipsna62 filter(geo %in% c("AT", "NL", "DE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("AT", "NL", "DE")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp/emp, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(5)[1:4]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format()) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Compensation of employees Per Employee")
%>%
tipsna62 filter(geo %in% c("DE", "FR", "PT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("DE", "FR", "PT")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
group_by(geo) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp_emp_d1, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Growth of Compensation Per Employee")
%>%
tipsna62 filter(geo %in% c("FR", "IT", "MT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("IT", "FR", "MT")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
group_by(geo) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp_emp_d1, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Growth of Compensation Per Employee")
%>%
tipsna62 filter(geo %in% c("DK", "SE", "PL"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("DK", "SE", "PL")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
group_by(geo) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp_emp_d1, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Growth of Compensation Per Employee")
%>%
tipsna62 filter(geo %in% c("AT", "NL", "DE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
filter(geo %in% c("AT", "NL", "DE")) %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
%>%
year_to_date left_join(geo, by = "geo") %>%
group_by(geo) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = comp_emp_d1, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Growth of Compensation Per Employee")
tipsna62
tipslm13
une_rt_a
%>%
tipsna62 filter(geo %in% c("AT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("BE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("CY"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("DE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("EE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("EL"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("ES"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("FI"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("FR"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("IE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("IT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("LT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("LU"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.4, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("LV"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("MT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("NL"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("PT"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("SI"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("SK"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
tipsna62
tipslm13
une_rt_a
%>%
tipsna62 filter(geo %in% c("BG"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("BG"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date filter(date >= as.Date("1999-01-01")) %>%
transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("CZ"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("DK"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("HR"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.15),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("HU"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.15),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("PL"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("RO"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 5),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")
%>%
tipsna62 filter(geo %in% c("SE"),
== "THS_PER") %>%
unit select(geo, time, emp = values) %>%
left_join(tipslm13 %>%
select(geo, time, comp = values),
by = c("geo", "time")) %>%
left_join(une_rt_a %>%
filter(age == "Y20-64",
== "T",
sex == "PC_ACT") %>%
unit select(geo, time, unr = values),
by = c("geo", "time")) %>%
mutate(comp_emp = comp/emp,
comp_emp_d1 = comp_emp/lag(comp_emp, 1)-1) %>%
%>%
year_to_date transmute(date, comp_emp_d1=100*comp_emp_d1, unr = unr) %>%
gather(variable, value, -date) %>%
mutate(Variable = case_when(variable == "comp_emp_d1" ~ "Wage Inflation (%)",
== "unr" ~ "Unemployment Rate (%)")) %>%
variable + geom_line() + theme_minimal() +
ggplot aes(x = date, y = value/100, color = Variable, linetype = Variable) +
scale_color_manual(values = viridis(3)[1:2]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2026, 2), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-100, 100, 1),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.8, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Unemployment Rate, Wage Inflation (%)")