| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | namq_10_pe | Population and employment | 2026-01-29 | 2026-01-28 |
| eurostat | nama_10_pe | Population and employment - nama_10_pe | 2026-01-29 | 2026-01-28 |
Population and employment
Data - Eurostat
Info
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-29 |
Last
Code
namq_10_pe %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025Q3 | 1275 |
na_item
Code
namq_10_pe %>%
left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| na_item | Na_item | Nobs |
|---|---|---|
| EMP_DC | Total employment domestic concept | 26090 |
| SAL_DC | Employees domestic concept | 24916 |
| SELF_DC | Self-employed domestic concept | 24916 |
| POP_NC | Total population national concept | 23856 |
| EMP_NC | Total employment national concept | 22324 |
| SAL_NC | Employees national concept | 21514 |
| SELF_NC | Self-employed national concept | 21514 |
s_adj
Code
namq_10_pe %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| s_adj | S_adj | Nobs |
|---|---|---|
| SCA | Seasonally and calendar adjusted data | 73367 |
| NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 61752 |
| SA | Seasonally adjusted data, not calendar adjusted data | 23875 |
| CA | Calendar adjusted data, not seasonally adjusted data | 6136 |
freq
Code
namq_10_pe %>%
left_join(freq, by = "freq") %>%
group_by(freq, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| freq | Freq | Nobs |
|---|---|---|
| Q | Quarterly | 165130 |
unit
Code
namq_10_pe %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| THS_PER | Thousand persons | 67348 |
| PCH_SM_PER | Percentage change compared to same period in previous year (based on persons) | 65192 |
| PCH_PRE_PER | Percentage change on previous period (based on persons) | 32590 |
geo
Code
namq_10_pe %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}time
Code
namq_10_pe %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Population Table
Code
namq_10_pe %>%
filter(time %in% c("2019Q1", "2009Q1", "1999Q1", "1989Q1"),
na_item == "POP_NC",
s_adj %in% c("SCA", "SA"),
unit == "THS_PER") %>%
select(geo, s_adj, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2009Q1`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Employment Table
Code
namq_10_pe %>%
filter(time %in% c("2019Q1", "2009Q1", "1999Q1", "1989Q1"),
na_item == "EMP_DC",
s_adj %in% c("SCA", "SA"),
unit == "THS_PER") %>%
select(geo, s_adj, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019Q1`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Eurozone
Last observation
Code
namq_10_pe %>%
filter(time == max(time),
na_item == "POP_NC") %>%
spread(unit, values) %>%
select_if(~ n_distinct(.) > 1) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, everything()) %>%
print_table_conditionalPrevious observation
Code
namq_10_pe %>%
filter(time %in% c("2023Q4", "2023Q3"),
na_item == "POP_NC",
geo == "EA20") %>%
spread(time, values) %>%
select_if(~ n_distinct(.) > 1) %>%
print_table_conditional| unit | 2023Q3 | 2023Q4 |
|---|---|---|
| PCH_SM_PER | 0.5 | 0.5 |
| THS_PER | 349664.7 | 350194.9 |
France, Germany, Italy, Europe
Population
All
Code
namq_10_pe %>%
filter(geo %in% c("FR", "DE", "IT", "EA20"),
unit == "THS_PER",
s_adj == "NSA",
na_item == "POP_NC") %>%
left_join(geo, by = "geo") %>%
quarter_to_date %>%
group_by(geo) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
ggplot() + ylab("Population") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1909, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Geo) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color), show.legend = F)
1999-
Code
namq_10_pe %>%
filter(geo %in% c("FR", "DE", "IT", "EA20"),
unit == "THS_PER",
s_adj == "NSA",
na_item == "POP_NC") %>%
left_join(geo, by = "geo") %>%
quarter_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(geo) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
ggplot() + ylab("Population") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1909, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Geo) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color), show.legend = F)
2001-2021
Code
namq_10_pe %>%
filter(geo %in% c("FR", "DE", "IT", "EA20"),
unit == "THS_PER",
s_adj == "NSA",
na_item == "POP_NC") %>%
left_join(geo, by = "geo") %>%
quarter_to_date %>%
filter(date >= as.Date("2001-01-01"),
date <= as.Date("2021-01-01")) %>%
group_by(geo) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
mutate(Geo = ifelse(geo == "EA20", "Europe", Geo)) %>%
left_join(colors, by = c( "Geo" = "country")) %>%
ggplot() + ylab("Population") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + theme_minimal() + add_4flags +
scale_x_date(breaks = seq(1909, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Geo) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = color), show.legend = F)
France Evolution
Max -
NSA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "NSA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("Indice des prix, Ensemble") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(1909, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item), show.legend = F)
SA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "SA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
#filter(date >= as.Date("1999-01-01")) %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(1979, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item))
1999 -
NSA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "NSA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("Indice des prix, Ensemble") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item))
SA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "SA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item))
2001-2021
NSA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "NSA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
filter(date >= as.Date("2001-01-01"),
date <= as.Date("2021-01-01")) %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("Indice des prix, Ensemble") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(1999, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item), show.legend = F)
SA
Code
namq_10_pe %>%
filter(geo == "FR",
unit == "THS_PER",
s_adj == "SA") %>%
left_join(na_item, by = "na_item") %>%
quarter_to_date %>%
filter(date >= as.Date("2001-01-01"),
date <= as.Date("2021-01-01")) %>%
group_by(na_item) %>%
mutate(values = 100*values/values[1]) %>%
select_if(~ n_distinct(.) > 1) %>%
ggplot() + ylab("") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Na_item)) +
theme_minimal() +
scale_x_date(breaks = seq(2001, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.7),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = "")) +
geom_label_repel(data = . %>% group_by(Na_item) %>% filter(date == max(date)), aes(x = date, y = values, label = round(values, 1), color = Na_item))