| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | namq_10_pe | Population and employment | 2026-02-12 | 2026-02-12 |
| eurostat | nama_10_pe | Population and employment - nama_10_pe | 2026-02-12 | 2026-02-12 |
Population and employment - nama_10_pe
Data - Eurostat
Info
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-02-14 |
Last
Code
nama_10_pe %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025 | 54 |
na_item
Code
nama_10_pe %>%
left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| na_item | Na_item | Nobs |
|---|---|---|
| POP_NC | Total population national concept | 2661 |
| EMP_DC | Total employment domestic concept | 2534 |
| SAL_DC | Employees domestic concept | 2467 |
| SELF_DC | Self-employed domestic concept | 2467 |
| EMP_NC | Total employment national concept | 2154 |
| SAL_NC | Employees national concept | 2105 |
| SELF_NC | Self-employed national concept | 2105 |
unit
Code
nama_10_pe %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| THS_PER | Thousand persons | 8376 |
| PCH_PRE_PER | Percentage change on previous period (based on persons) | 8117 |
geo
Code
nama_10_pe %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}time
Code
nama_10_pe %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Population Table
English
Code
nama_10_pe %>%
filter(time %in% c("2019", "2009", "1999", "1989"),
na_item == "POP_NC",
unit == "THS_PER") %>%
select(geo, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}French
Code
load_data("eurostat/geo_fr.RData")
nama_10_pe %>%
filter(time %in% c("2019", "2009", "1999", "1989"),
na_item == "POP_NC",
unit == "THS_PER") %>%
select(geo, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}png table
Code
include_graphics3("bib/eurostat/nama_10_pe_ex1.png")
Employment Table
Code
load_data("eurostat/geo.RData")
nama_10_pe %>%
filter(time %in% c("2019", "2009", "1999", "1989"),
na_item == "EMP_DC",
unit == "THS_PER") %>%
select(geo, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Employment / Population Table
Code
load_data("eurostat/geo_fr.RData")
nama_10_pe %>%
filter(time %in% c("2019", "2009", "1999", "1989"),
na_item %in% c("EMP_DC", "POP_NC"),
unit == "THS_PER") %>%
select(geo, na_item, time, values) %>%
spread(na_item, values) %>%
transmute(geo, time, values = 100*EMP_DC/POP_NC) %>%
mutate(values = round(values, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Poland, Germany, Hungary
Code
nama_10_pe %>%
filter(geo %in% c("PL", "DE", "HU"),
na_item %in% c("EMP_DC", "POP_NC"),
unit == "THS_PER") %>%
select(geo, na_item, time, values) %>%
spread(na_item, values) %>%
transmute(geo, time, values = EMP_DC/POP_NC) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
ggplot + geom_line(aes(x = date, y = values, color = Geo, linetype = Geo)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_continuous(breaks = 0.01*seq(-30, 70, 1),
labels = percent_format(a = 1))
France, Italy, Spain
Code
nama_10_pe %>%
filter(geo %in% c("FR", "IT", "ES"),
na_item %in% c("EMP_DC", "POP_NC"),
unit == "THS_PER") %>%
select(geo, na_item, time, values) %>%
spread(na_item, values) %>%
transmute(geo, time, values = EMP_DC/POP_NC) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
ggplot + geom_line(aes(x = date, y = values, color = Geo, linetype = Geo)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_continuous(breaks = 0.01*seq(-30, 70, 1),
labels = percent_format(a = 1))