| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | namq_10_pe | Population and employment | 2026-01-29 | 2026-01-29 |
| eurostat | nama_10_fte | Average full time adjusted salary per employee | 2026-01-29 | 2026-01-29 |
Average full time adjusted salary per employee
Data - Eurostat
Info
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-31 |
Last
Code
nama_10_fte %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2024 | 56 |
freq
Code
nama_10_fte %>%
left_join(freq, by = "freq") %>%
group_by(freq, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| freq | Freq | Nobs |
|---|---|---|
| A | Annual | 1560 |
unit
Code
nama_10_fte %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| EUR | Euro | 780 |
| NAC | National currency | 780 |
geo
Code
nama_10_fte %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}time
Code
nama_10_fte %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Population Table
English
Code
nama_10_fte %>%
filter(time %in% c(max(time), "2019", "2009", "1999", "1989"),
unit == "EUR") %>%
select(geo, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}French
Code
load_data("eurostat/geo_fr.RData")
nama_10_fte %>%
filter(time %in% c(max(time), "2019", "2009", "1999", "1989"),
unit == "EUR") %>%
select(geo, time, values) %>%
mutate(values = round(values/1000, 1)) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
arrange(- `2019`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Countries
Poland, Germany, Hungary
Code
load_data("eurostat/geo.RData")
nama_10_fte %>%
filter(geo %in% c("PL", "DE", "HU"),
unit == "EUR") %>%
select(geo, time, values) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
ggplot + geom_line(aes(x = date, y = values/1000, color = Geo)) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_continuous(breaks = seq(-30, 150, 10))
France, Italy, Spain
Code
nama_10_fte %>%
filter(geo %in% c("FR", "IT", "ES"),
unit == "EUR") %>%
select(geo, time, values) %>%
year_to_date %>%
left_join(geo, by = "geo") %>%
ggplot + geom_line(aes(x = date, y = values/1000, color = Geo)) +
theme_minimal() +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2100, 5), "-01-01")),
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("") +
scale_y_continuous(breaks = seq(-30, 150, 10))