T_82XX - Comptes de patrimoine
Data - INSEE
Info
Dernière année
Code
%>%
T_82XX group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()
year | Nobs |
---|---|
2023 | 434 |
Ordre Ligne
N
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "N") %>%
select(-name) %>%
select(-year) %>%
spread(`SECT-INST`, value) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
F
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "F") %>%
select(-name) %>%
select(-year) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
spread(`SECT-INST`, value) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
SECT-INST, name
Code
%>%
T_82XX group_by(`SECT-INST`, name) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
SECT-INST | name | Nobs |
---|---|---|
S1 | 8.201 – Comptes de patrimoine de l'économie nationale (S1) | 2046 |
S11 | 8.202 – Comptes de patrimoine des sociétés non financières (S11) | 1811 |
S12 | 8.203 – Comptes de patrimoine des sociétés financières (S12) | 1863 |
S13 | 8.204 – Compte de patrimoine des administrations publiques (S13) | 1913 |
S1311 | 8.205 – Compte de patrimoine de l'administration publique centrale (S1311) | 1700 |
S13111 | 8.206 – Compte de patrimoine de l'État (S13111) | 1567 |
S13112 | 8.207 – Compte de patrimoine des organismes divers d'administration centrale (S13112) | 1459 |
S1313 | 8.208 – Compte de patrimoine des administrations publiques locales (S1313) | 1464 |
S1314 | 8.209 – Compte de patrimoine des administrations de sécurité sociale (S1314) | 1355 |
S14 | 8.210 – Compte de patrimoine des ménages (S14) | 1660 |
asset
Code
%>%
T_82XX group_by(asset, Asset) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
sector
Code
%>%
T_82XX left_join(`SECT-INST`, by = "SECT-INST") %>%
group_by(`SECT-INST`, `Sect-Inst`) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
SECT-INST | Sect-Inst | Nobs |
---|---|---|
S1 | S1 - Ensemble économie nationale | 2046 |
S11 | S11 - Sociétés non financières | 1811 |
S12 | S12 - Sociétés financières | 1863 |
S13 | S13 - Administrations publiques (APU) | 1913 |
S1311 | S1311 - Administrations publiques centrales (APUC) | 1700 |
S13111 | S13111 - État | 1567 |
S13112 | S13112 - ODAC | 1459 |
S1313 | S1313 - Administrations publiques locales (APUL) | 1464 |
S1314 | S1314 - Administrations de sécurité sociale | 1355 |
S14 | S14 - Ménages y compris entreprises individuelles | 1660 |
S1 - Sociétés non financières
N - Table
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "N",
`SECT-INST` == "S1") %>%
select(-name, -year, -`SECT-INST`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
F - Table
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -year, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
spread(actif, value) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
F
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F2 - Numéraire et dépôts
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F2") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F3 - Titres de créance
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F3") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F4 - Crédits
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F4") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F5 - Actions
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F5") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F511 - Actions côtées
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F511") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F1 - Or monétaire
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S1") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F1") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 3000, 1),
labels = dollar_format(accuracy = .01, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
S11 - Sociétés non financières
N - Table
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "N",
`SECT-INST` == "S11") %>%
select(-name, -year, -`SECT-INST`) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
F - Table
Code
%>%
T_82XX filter(year == max(year),
substr(asset, 1, 1) == "F",
`SECT-INST` == "S11") %>%
select(-name, -year, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
spread(actif, value) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
F
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S11") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 50),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F511
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S11") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F511") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 10),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
F5
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S11") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F5") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 50),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
S14 - Ménages
F6 - Assurances
Code
%>%
T_82XX filter(substr(asset, 1, 1) == "F",
`SECT-INST` == "S14") %>%
select(-name, -`SECT-INST`) %>%
mutate(actif = case_when(grepl("actifs", Asset) ~ "actif",
grepl("passifs", Asset) ~ "passif",
~ NA)) %>%
T fill(actif) %>%
filter(asset == "F6") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = actif)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 20),
labels = dollar_format(accuracy = .1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
Actifs non financiers
années de PIB
Code
%>%
T_82XX filter(`SECT-INST` == "S1",
%in% c("NN", "N1N", "N11N")) %>%
asset mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = Asset)) +
ggplot theme_minimal() + xlab("") + ylab("Années de PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " ans")) +
#scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
% du PIB
Code
%>%
T_82XX filter(`SECT-INST` == "S1",
%in% c("NN", "N1N", "N11N")) %>%
asset mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = Asset)) +
ggplot theme_minimal() + xlab("") + ylab("% du PIB") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 100),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
Terrains (N211N)
Milliards
Tous
Code
%>%
T_82XX filter(asset %in% c("N211N"),
`SECT-INST` %in% c("S1", "S14", "S11", "S13")) %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
+ geom_line(aes(x = date, y = value, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("Terrains (Années de PIB)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 1000),
labels = dollar_format(accuracy = 1, pre = "", su = " Md€")) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
2015-
Code
%>%
T_82XX filter(asset %in% c("N211N"),
`SECT-INST` %in% c("S1", "S14", "S11", "S13")) %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
filter(year(date) >= 2015) %>%
+ geom_line(aes(x = date, y = value, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("Terrains (Années de PIB)") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 1000),
labels = dollar_format(accuracy = 1, pre = "", su = " Md€")) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank()) +
geom_label(aes(x = date, y = value, label = round(value, 1), color = `Sect-Inst`))
2019-
Code
%>%
T_82XX filter(asset %in% c("N211N"),
`SECT-INST` %in% c("S1", "S14", "S11", "S13")) %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
filter(year(date) >= 2019) %>%
+ geom_line(aes(x = date, y = value, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("Terrains (Années de PIB)") +
scale_x_date(breaks = seq(1960, 2100, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 10000, 1000),
labels = dollar_format(accuracy = 1, pre = "", su = " Md€")) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank()) +
geom_label(aes(x = date, y = value, label = round(value, 1), color = `Sect-Inst`))
années de PIB
Code
%>%
T_82XX filter(asset %in% c("N211N"),
`SECT-INST` %in% c("S1", "S14", "S11", "S13")) %>%
left_join(`SECT-INST`, by = "SECT-INST") %>%
mutate(date = as.Date(paste0(year, "-01-01"))) %>%
left_join(gdp, by = "date") %>%
+ geom_line(aes(x = date, y = value / gdp, color = `Sect-Inst`)) +
ggplot theme_minimal() + xlab("") + ylab("Terrains (Années de PIB)") +
scale_x_date(breaks = seq(1960, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 900, 100),
labels = dollar_format(accuracy = 1, pre = "", su = " ans")) +
theme(legend.position = c(0.3, 0.83),
legend.title = element_blank())
Info
Fin 2023
Code
ig_b("insee", "ip2028", "fig2")
Fin 2022
20 décembre 2023
Code
ig_b("insee", "ip1967", "table2")
Fin 2021
Code
ig_b("insee", "ip1925", "tab2")
Fin 2020
Code
ig_b("insee", "ip1874", "table2")
Fin 2019
Code
ig_b("insee", "ip1832", "fig2")
Fin 2010
Code
ig_b("insee", "ip1305", "tab1")
BDF
Code
ig_b("bdf", "patrimoine-T1")
Figure
Code
ig_b("bdf", "stock-patrimonial-en-annees")