| source | dataset | Title | .html | .rData |
|---|---|---|---|---|
| eurostat | prc_hicp_ctrb | Contributions to euro area annual inflation (in percentage points) | 2026-01-16 | 2026-01-16 |
Gross domestic product (GDP) at current market prices by NUTS 2 regions
Data - Eurostat
Info
LAST_DOWNLOAD
Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/nama_10r_2gdp.RData")$mtime)) %>%
print_table_conditional()| LAST_DOWNLOAD |
|---|
| 2026-01-16 |
LAST_COMPILE
| LAST_COMPILE |
|---|
| 2026-01-17 |
Last
Code
nama_10r_2gdp %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2023 | 3002 |
unit
Code
nama_10r_2gdp %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| unit | Unit | Nobs |
|---|---|---|
| MIO_EUR | Million euro | 10707 |
| MIO_NAC | Million units of national currency | 10707 |
| MIO_PPS_EU27_2020 | Million purchasing power standards (PPS, EU27 from 2020) | 10707 |
| EUR_HAB | Euro per inhabitant | 9865 |
| EUR_HAB_EU27_2020 | Euro per inhabitant in percentage of the EU27 (from 2020) average | 9865 |
| PPS_EU27_2020_HAB | Purchasing power standard (PPS, EU27 from 2020), per inhabitant | 9865 |
| PPS_HAB_EU27_2020 | Purchasing power standard (PPS, EU27 from 2020), per inhabitant in percentage of the EU27 (from 2020) average | 9865 |
geo
Code
nama_10r_2gdp %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}time
Code
nama_10r_2gdp %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2023 | 3002 |
| 2022 | 3002 |
| 2021 | 3129 |
| 2020 | 3094 |
| 2019 | 3130 |
| 2018 | 3130 |
| 2017 | 3130 |
| 2016 | 3130 |
| 2015 | 3130 |
| 2014 | 3130 |
| 2013 | 3090 |
| 2012 | 3090 |
| 2011 | 3090 |
| 2010 | 3090 |
| 2009 | 3076 |
| 2008 | 3076 |
| 2007 | 2949 |
| 2006 | 2949 |
| 2005 | 2928 |
| 2004 | 2928 |
| 2003 | 2655 |
| 2002 | 2551 |
| 2001 | 2551 |
| 2000 | 2551 |
France
Table
Code
nama_10r_2gdp %>%
filter(grepl("FR", geo),
unit %in% c("EUR_HAB", "PPS_EU27_2020_HAB"),
time == "2020") %>%
left_join(geo, by = "geo") %>%
spread(unit, values) %>%
mutate(pps = PPS_EU27_2020_HAB/EUR_HAB) %>%
select(-time) %>%
arrange(-pps) %>%
print_table_conditionalIle de France
Code
nama_10r_2gdp %>%
filter(unit %in% c("EUR_HAB", "PPS_EU27_2020_HAB"),
geo %in% c("FRC2", "FR10", "FRG0", "FRD1")) %>%
left_join(geo, by = "geo") %>%
spread(unit, values) %>%
mutate(values = PPS_EU27_2020_HAB/EUR_HAB) %>%
year_to_date %>%
ggplot + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("PPS") +
theme(legend.title = element_blank(),
legend.position = c(0.75, 0.85)) +
scale_x_date(breaks = seq(1960, 2026, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
Germany
Table
Code
nama_10r_2gdp %>%
filter(grepl("DE", geo),
unit %in% c("EUR_HAB", "PPS_EU27_2020_HAB"),
time == "2020") %>%
left_join(geo, by = "geo") %>%
spread(unit, values) %>%
mutate(pps = PPS_EU27_2020_HAB/EUR_HAB) %>%
select(-time) %>%
arrange(-pps) %>%
print_table_conditionalRégions
Code
nama_10r_2gdp %>%
filter(unit %in% c("EUR_HAB", "PPS_EU27_2020_HAB"),
geo %in% c("DEB3", "DEE0", "DE40", "DE13")) %>%
left_join(geo, by = "geo") %>%
spread(unit, values) %>%
mutate(values = PPS_EU27_2020_HAB/EUR_HAB) %>%
year_to_date %>%
ggplot + geom_line(aes(x = date, y = values, color = Geo)) +
theme_minimal() + xlab("") + ylab("PPS") +
theme(legend.title = element_blank(),
legend.position = c(0.75, 0.15)) +
scale_x_date(breaks = seq(1960, 2026, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-500, 200, 1),
labels = percent_format(accuracy = 1))
Maps
2019
Code
nama_10r_2gdp %>%
filter(time == "2019",
unit == "EUR_HAB") %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = "€"),
breaks = seq(10000, 120000, 10000),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "GDP Per inhabitant")
2018
Code
nama_10r_2gdp %>%
filter(time == "2018",
unit == "EUR_HAB") %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = "€"),
breaks = seq(10000, 120000, 10000),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "GDP Per inhabitant")