tibble(dataset = c("ext_st_ea19sitc", "ext_st_eu27_2020sitc", "namq_10_a10")) %>%
mutate(LAST_DOWNLOAD = as.Date(file.info(paste0("~/Dropbox/website/data/eurostat/", dataset, ".RData"))$mtime)) %>%
mutate(html = paste0("[html](https://fgeerolf.com/data/eurostat/", dataset, '.html)')) %>%
print_table_conditional()
dataset | LAST_DOWNLOAD | html |
---|---|---|
ext_st_ea19sitc | 2023-02-14 | html |
ext_st_eu27_2020sitc | 2023-04-16 | html |
namq_10_a10 | 2023-04-16 | html |
LAST_COMPILE |
---|
2023-04-16 |
%>%
ext_st_ea19sitc group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2022M11 | 9747 |
%>%
ext_st_ea19sitc left_join(stk_flow, by = "stk_flow") %>%
group_by(stk_flow, Stk_flow) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
stk_flow | Stk_flow | Nobs |
---|---|---|
EXP | Exports | 2957259 |
IMP | Imports | 2925662 |
BAL_RT | Balance for values / Ratio for indices | 1389764 |
%>%
ext_st_ea19sitc left_join(indic_et, by = "indic_et") %>%
group_by(indic_et, Indic_et) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
indic_et | Indic_et | Nobs |
---|---|---|
TRD_VAL | Trade value in million ECU/EURO | 894999 |
TRD_VAL_SCA | Seasonally and calendar adjusted trade value in million ECU/EURO | 894999 |
IVU | Unit value index (2015=100) | 797307 |
IVOL_NSA | Volume indices - unadjusted data (2015=100) | 796282 |
IVOL_SCA | Seasonally and calendar adjusted volume indices (2015=100) | 796238 |
TRD_VAL_SCA_RT1 | Growth rate M/M-1 of the seasonally and calendar adjusted trade value | 592016 |
TRD_VAL_RT12 | Growth rate M/M-12 of the trade value | 569410 |
IVU_RT1 | Growth rate M/M-1 of the unit-value indices | 493482 |
IVOL_SCA_RT1 | Growth rate M/M-1 of the seasonally and calendar adjusted volume Indices | 492169 |
IVU_RT12 | Growth rate M/M-12 of the unit-value indices | 473490 |
IVOL_NSA_RT12 | Growth rate M/M-12 of the volume Indices - unadjusted data | 472293 |
%>%
ext_st_ea19sitc left_join(sitc06, by = "sitc06") %>%
group_by(sitc06, Sitc06) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
sitc06 | Sitc06 | Nobs |
---|---|---|
TOTAL | Total - all products | 484982 |
SITC5-8 | Manufactured goods | 484132 |
SITC6_8 | Other manufactured goods | 484074 |
SITC6 | Manufactured goods classified chiefly by material | 484012 |
SITC2_4 | Raw materials | 483955 |
SITC7 | Machinery and transport equipment | 483938 |
SITC2 | Crude materials, inedible, except fuels | 483934 |
SITC8 | Miscellaneous manufactured articles | 483141 |
SITC5 | Chemicals and related products, n.e.s. | 483083 |
SITC0_1 | Food, drinks and tobacco | 482609 |
SITC0 | Food and live animals | 482418 |
SITC1 | Beverages and tobacco | 480222 |
SITC3 | Mineral fuels, lubricants and related materials | 474155 |
SITC4 | Animal and vegetable oils, fats and waxes | 466278 |
SITC33 | Petroleum, petroleum products and related materials | 346983 |
SITC9 | Commodities and transactions not classified elsewhere in the SITC | 184769 |
%>%
ext_st_ea19sitc left_join(stk_flow, by = "stk_flow") %>%
group_by(stk_flow, Stk_flow) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
stk_flow | Stk_flow | Nobs |
---|---|---|
EXP | Exports | 2957259 |
IMP | Imports | 2925662 |
BAL_RT | Balance for values / Ratio for indices | 1389764 |
%>%
ext_st_ea19sitc left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
ext_st_ea19sitc left_join(partner, by = "partner") %>%
group_by(partner, Partner) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
%>%
ext_st_ea19sitc group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()