source | dataset | .html | .RData |
---|---|---|---|
oecd | EO | 2024-04-16 | 2024-04-15 |
oecd | EO113_INTERNET | 2024-04-15 | 2023-06-07 |
source | dataset | .html | .RData |
---|---|---|---|
oecd | EO | 2024-04-16 | 2024-04-15 |
oecd | EO108_INTERNET | 2024-04-16 | 2020-12-05 |
oecd | EO109_INTERNET | 2024-04-16 | 2023-03-18 |
oecd | EO110_INTERNET | 2024-04-16 | 2023-03-18 |
oecd | EO111_INTERNET | 2024-04-16 | 2023-03-18 |
oecd | EO112_INTERNET | 2024-04-16 | 2023-03-18 |
oecd | EO113_INTERNET | 2024-04-15 | 2023-06-07 |
LAST_COMPILE |
---|
2024-04-16 |
obsTime | Nobs |
---|---|
2025-Q4 | 1 |
EO113_INTERNET %>%
left_join(EO113_INTERNET_var$FREQUENCY, by = "FREQUENCY") %>%
group_by(FREQUENCY, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
FREQUENCY | Frequency | Nobs |
---|---|---|
Q | Quarterly | 781864 |
A | Annual | 399080 |
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "LTU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Lithuania") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "SVK",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Slovakia") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "FIN",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Finland") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO113_INTERNET %>%
mutate(vintage = "EO No 113 - June 2023") %>%
bind_rows(EO110_INTERNET %>%
mutate(vintage = "EO No 110 - December 2021")) %>%
filter(LOCATION == "DEU",
obsTime == "2023-Q1",
VARIABLE %in% c("GDPV", "ITV", "CPV", "CGV", "MGSV", "XGSV"),
FREQUENCY == "Q") %>%
left_join(EO113_INTERNET_var$VARIABLE, by = "VARIABLE") %>%
select(VARIABLE, Variable, UNIT, vintage, obsValue) %>%
spread(vintage, obsValue) %>%
mutate(`Change (%)` = round(100*(`EO No 113 - June 2023`/`EO No 110 - December 2021`-1), 2)) %>%
print_table_conditional()
VARIABLE | Variable | UNIT | EO No 110 - December 2021 | EO No 113 - June 2023 | Change (%) |
---|---|---|---|---|---|
CGV | Government final consumption expenditure, volume | EUR | 7.079714e+11 | 6.749840e+11 | -4.66 |
CPV | Private final consumption expenditure, volume | EUR | 1.764611e+12 | 1.673660e+12 | -5.15 |
GDPV | Gross domestic product, volume, market prices | EUR | 3.360288e+12 | 3.238844e+12 | -3.61 |
ITV | Gross fixed capital formation, total, volume | EUR | 7.141888e+11 | 6.806400e+11 | -4.70 |
MGSV | Imports of goods and services, volume (national accounts basis) | EUR | 1.476323e+12 | 1.472700e+12 | -0.25 |
XGSV | Exports of goods and services, volume (national accounts basis) | EUR | 1.634885e+12 | 1.623416e+12 | -0.70 |
EO113_INTERNET %>%
mutate(vintage = "EO No 113 - June 2023") %>%
bind_rows(EO110_INTERNET %>%
mutate(vintage = "EO No 110 - December 2021")) %>%
filter(LOCATION == "DEU",
obsTime == "2023-Q1",
FREQUENCY == "Q") %>%
left_join(EO113_INTERNET_var$VARIABLE, by = "VARIABLE") %>%
select(VARIABLE, Variable, UNIT, vintage, obsValue) %>%
spread(vintage, obsValue) %>%
mutate(`Change (%)` = round(100*(`EO No 113 - June 2023`/`EO No 110 - December 2021`-1), 2)) %>%
print_table_conditional()
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "DEU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2014-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2014-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Germany") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "DEU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2017-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2017-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Germany") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "GDPV",
LOCATION == "DEU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Gross Domestic Product in Volume, Germany") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "CPV",
LOCATION == "DEU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Consumption in Volume, Germany") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "Economic Outlook No 110 - December 2021") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "Economic Outlook No 111 - June 2022")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "Economic Outlook No 112 - November 2022")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "Economic Outlook No 113 - June 2023")) %>%
filter(VARIABLE == "ITV",
LOCATION == "DEU",
FREQUENCY == "Q") %>%
quarter_to_date() %>%
filter(date >= as.Date("2021-01-01")) %>%
group_by(vintage) %>%
mutate(obsValue = 100*obsValue/obsValue[date == as.Date("2021-01-01")]) %>%
ggplot + geom_line(aes(x = date, y = obsValue, color = vintage)) +
xlab("") + ylab("Investment in Volume, Germany") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(20, 200, 1))
EO110_INTERNET %>%
mutate(vintage = "2021-12") %>%
bind_rows(EO111_INTERNET %>%
mutate(vintage = "2022-06")) %>%
bind_rows(EO112_INTERNET %>%
mutate(vintage = "2022-11")) %>%
bind_rows(EO113_INTERNET %>%
mutate(vintage = "2023-06")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
filter(VARIABLE == "GDPV",
obsTime == "2023-Q1",
FREQUENCY == "Q") %>%
select(vintage, Location, obsValue) %>%
group_by(Location) %>%
mutate(obsValue = 100*obsValue/obsValue[vintage == "2021-12"]) %>%
spread(vintage, obsValue) %>%
arrange(`2023-06`) %>%
print_table_conditional()
EO113_INTERNET %>%
filter(FREQUENCY == "A",
VARIABLE == "GAP",
LOCATION %in% c("DEU", "ESP", "GRC", "ITA")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
year_to_date %>%
select(Location, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 5),
labels = scales::percent_format(accuracy = 1)) +
ylab("Output Gap (% of GDP)") + xlab("")
EO113_INTERNET %>%
filter(FREQUENCY == "A",
VARIABLE == "GAP",
LOCATION %in% c("CHE", "FRA", "DEU", "USA")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
year_to_date %>%
select(Location, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 5),
labels = scales::percent_format(accuracy = 1)) +
ylab("Output Gap (% of GDP)") + xlab("")
EO113_INTERNET %>%
filter(FREQUENCY == "Q",
VARIABLE == "UNR",
LOCATION %in% c("DEU", "ITA", "FRA", "USA")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
quarter_to_date %>%
select(Location, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Unemployment Rate (%)") + xlab("")
EO113_INTERNET %>%
filter(FREQUENCY == "Q",
VARIABLE == "UNR",
LOCATION %in% c("DEU", "ITA", "FRA", "USA")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
quarter_to_date %>%
filter(date >= as.Date("1990-01-01")) %>%
select(Location, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Unemployment Rate (%)") + xlab("")
EO113_INTERNET %>%
filter(FREQUENCY == "Q",
VARIABLE == "UNR",
LOCATION %in% c("DEU", "ITA", "FRA", "USA")) %>%
left_join(EO113_INTERNET_var$LOCATION, by = "LOCATION") %>%
quarter_to_date %>%
filter(date >= as.Date("2010-01-01")) %>%
select(Location, date, obsValue) %>%
arrange(Location, date) %>%
mutate(obsValue = obsValue/100) %>%
left_join(colors, by = c("Location" = "country")) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = color)) +
theme_minimal() + scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
ylab("Unemployment Rate (%)") + xlab("")