Error in readChar(con, 5L, useBytes = TRUE) :
impossible d'ouvrir la connexion
Error in readChar(con, 5L, useBytes = TRUE) :
impossible d'ouvrir la connexion
Data - ECB
Error in readChar(con, 5L, useBytes = TRUE) :
impossible d'ouvrir la connexion
Error in readChar(con, 5L, useBytes = TRUE) :
impossible d'ouvrir la connexion
| source | dataset | .html | .qmd | .RData |
|---|---|---|---|---|
| ecb | MNA | [2026-01-29] | https://fgee | olf.com/data |
| source | dataset | Title | Download | Compile |
|---|---|---|---|---|
| bdf | FM | Marché financier, taux | 2026-01-30 | [2026-01-30] |
| bdf | MIR | Taux d'intérêt - Zone euro | 2025-08-04 | [2026-01-30] |
| bdf | MIR1 | Taux d'intérêt - France | 2025-08-04 | [2026-01-30] |
| bis | CBPOL | Policy Rates, Daily | 2026-01-30 | [2026-01-11] |
| ecb | BSI | Balance Sheet Items | NA | [2026-01-30] |
| ecb | BSI_PUB | Balance Sheet Items - Published series | NA | [2026-01-30] |
| ecb | FM | Financial market data | NA | [2026-01-30] |
| ecb | ILM | Internal Liquidity Management | NA | [2026-01-31] |
| ecb | ILM_PUB | Internal Liquidity Management - Published series | 2024-09-10 | [2026-01-31] |
| ecb | MIR | MFI Interest Rate Statistics | 2025-08-28 | [2026-01-31] |
| ecb | RAI | Risk Assessment Indicators | 2025-08-28 | [2026-01-29] |
| ecb | SUP | Supervisory Banking Statistics | 2025-08-28 | [2025-12-19] |
| ecb | YC | Financial market data - yield curve | NA | [2026-01-29] |
| ecb | YC_PUB | Financial market data - yield curve - Published series | NA | [2026-01-29] |
| ecb | liq_daily | Daily Liquidity | 2025-06-06 | [2026-01-31] |
| eurostat | ei_mfir_m | Interest rates - monthly data | 2026-01-30 | [2026-01-29] |
| eurostat | irt_st_m | Money market interest rates - monthly data | 2026-01-30 | [2026-01-29] |
| fred | r | Interest Rates | 2026-01-30 | [2026-01-30] |
| oecd | MEI | Main Economic Indicators | 2025-07-24 | [2024-04-16] |
| oecd | MEI_FIN | Monthly Monetary and Financial Statistics (MEI) | 2025-07-24 | [2024-09-15] |
| LAST_COMPILE |
|---|
| 2026-01-31 |
MNA %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
head(1) %>%
print_table_conditional()| TIME_PERIOD | Nobs |
|---|---|
| 2025-Q2 | 3200 |
MNA %>%
left_join(STO, by = "STO") %>%
group_by(STO, Sto) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}MNA %>%
left_join(PRICES, by = "PRICES") %>%
group_by(PRICES, Prices) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| PRICES | Prices | Nobs |
|---|---|---|
| V | Current prices | 1181635 |
| LR | Chain linked volume (rebased) | 788152 |
| D | Deflator (index) | 371422 |
| _Z | Not applicable | 190066 |
| Y | Previous year prices | 176327 |
MNA %>%
left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| ADJUSTMENT | Adjustment | Nobs |
|---|---|---|
| N | Neither seasonally nor working day adjusted | 1357603 |
| Y | Working day and seasonally adjusted | 1139841 |
| S | Seasonally adjusted, not working day adjusted | 143486 |
| W | Working day adjusted, not seasonally adjusted | 66672 |
MNA %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| FREQ | Freq | Nobs |
|---|---|---|
| Q | Quarterly | 2422163 |
| A | Annual | 285439 |
MNA %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}MNA %>%
left_join(COUNTERPART_AREA, by = "COUNTERPART_AREA") %>%
group_by(COUNTERPART_AREA, Counterpart_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| COUNTERPART_AREA | Counterpart_area | Nobs |
|---|---|---|
| W2 | Intra-Euro area not allocated | 1797199 |
| W0 | Intra-EU (changing composition) not allocated | 819020 |
| W1 | Gaza and Jericho | 91383 |
MNA %>%
group_by(TITLE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}B1GQ %>%
ggplot + geom_line(aes(x = date, y = B1GQ)) +
theme_minimal() + xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 20000, 500),
labels = dollar_format(acc = 1, pre = "", su = "Bn€")) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2030, 2), "-01-01")),
labels = date_format("%Y"))
B1GQ %>%
filter(date >= as.Date("1999-01-01")) %>%
ggplot + geom_line(aes(x = date, y = B1GQ)) +
theme_minimal() + xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 20000, 1000),
labels = dollar_format(acc = 1, pre = "", su = "Bn€")) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2030, 2), "-01-01")),
labels = date_format("%Y"))
tibble(date = seq.Date(from = as.Date("1995-01-01"), to = Sys.Date(), "1 month")) %>%
left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
gather(variable, value, -date) %>%
filter(!is.na(value)) %>%
ggplot + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("") +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 20000, 500),
labels = dollar_format(acc = 1, pre = "", su = "Bn€")) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2030, 2), "-01-01")),
labels = date_format("%Y"))
tibble(date = seq.Date(from = as.Date("1995-01-01"), to = Sys.Date(), "1 month")) %>%
left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
gather(variable, value, -date) %>%
filter(date >= as.Date("2010-01-01"),
!is.na(value)) %>%
ggplot + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 20000, 500),
labels = dollar_format(acc = 1, pre = "", su = "Bn€")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2030, 2), "-01-01")),
labels = date_format("%Y"))
tibble(date = seq.Date(from = as.Date("1995-01-01"), to = Sys.Date(), "1 month")) %>%
left_join(B1GQ %>% mutate(date = date + months(3)), by = "date") %>%
mutate(B1GQ_i = spline(x = date, y = B1GQ, xout = date)$y) %>%
gather(variable, value, -date) %>%
filter(date >= as.Date("2019-01-01"),
!is.na(value)) %>%
ggplot + geom_line(aes(x = date, y = value, color = variable)) +
theme_minimal() + xlab("") + ylab("") +
scale_y_log10(breaks = seq(0, 20000, 500),
labels = dollar_format(acc = 1, pre = "", su = "Bn€")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1940, 2030, 1), "-01-01")),
labels = date_format("%Y"))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = 0.01*seq(0, 200, 5))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/100, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = 0.01*seq(0, 200, 5))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
filter(date >= as.Date("2009-01-01"),
date <= as.Date("2014-12-31")) %>%
group_by(TITLE) %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
group_by(TITLE) %>%
mutate(OBS_VALUE = lead(log(OBS_VALUE), 4) - lag(log(OBS_VALUE), 4)) %>%
filter(date >= as.Date("1997-01-01")) %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.35, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 200, 2),
labels = percent_format(acc = 1))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
group_by(TITLE) %>%
mutate(OBS_VALUE = lead(log(OBS_VALUE), 4) - lag(log(OBS_VALUE), 4)) %>%
filter(date >= as.Date("2000-01-01")) %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.25, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 200, 1),
labels = percent_format(acc = 1))
MNA %>%
filter(ADJUSTMENT == "Y",
REF_AREA == "I8",
STO %in% c("P7", "P6"),
# D: Deflator (index)
PRICES == "D") %>%
quarter_to_date() %>%
group_by(TITLE) %>%
mutate(OBS_VALUE = lead(log(OBS_VALUE), 4) - lag(log(OBS_VALUE), 4)) %>%
filter(date >= as.Date("2009-01-01"),
date <= as.Date("2014-12-31")) %>%
ggplot() + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE, color = TITLE)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.7, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-100, 200, 1),
labels = percent_format(acc = 1))