Enquête annuelle du SGACPR sur le financement de l’habitat 2020
Data - ACPR
Info
Production
Code
i_g("bib/acpr/ACPR_production.png")
Encours
Code
i_g("bib/acpr/ACPR_encours.png")
variable
Code
%>%
as124 group_by(Variable, Line) %>%
summarise(Nobs = n()) %>%
arrange(Line) %>%
print_table_conditional()
year
Code
%>%
as124 group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
print_table_conditional()
year | Nobs |
---|---|
2020 | 74 |
2019 | 76 |
2018 | 76 |
2017 | 76 |
2016 | 76 |
2015 | 76 |
2014 | 76 |
2013 | 76 |
2012 | 76 |
2011 | 76 |
2010 | 76 |
2009 | 70 |
2008 | 70 |
2007 | 70 |
2006 | 70 |
2005 | 70 |
2004 | 70 |
2003 | 70 |
2002 | 70 |
2001 | 70 |
Taux d’effort moyen
Code
%>%
as124 %>%
year_to_date2 filter(Line == 32) %>%
+ geom_line(aes(x = date, y = value)) +
ggplot scale_color_manual(values = viridis(5)[1:4]) +
xlab("") + ylab("Taux d'effort moyen (%)") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = percent_format(a = 1))
Durée moyenne des prêts
Code
%>%
as124 %>%
year_to_date2 filter(Line == 27) %>%
+ geom_line(aes(x = date, y = value)) +
ggplot scale_color_manual(values = viridis(5)[1:4]) +
xlab("") + ylab("Durée moyenne des prêts") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 100, 1),
labels = dollar_format(a = 1, su = " ans", pre = ""))
Taux d’endettement moyen des emprunteurs à l’octroi
Code
%>%
as124 %>%
year_to_date2 filter(Line == 43) %>%
filter(value >0) %>%
+ geom_line(aes(x = date, y = value)) +
ggplot scale_color_manual(values = viridis(5)[1:4]) +
xlab("") + ylab("Taux d'endettement moyen des emprunteurs à l'octroi") + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 100, .2),
labels = dollar_format(a = .1, su = " ans", pre = ""))
Taux d’apport - Evolution
Legend
Code
%>%
as124 %>%
year_to_date2 filter(Line %in% c(38, 39, 40, 41)) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Taux d'apport (%)") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
Nouvelle
Code
<- as.Date("2020-12-31")
date0 <- as.Date("2021-12-31")
date1 %>%
as124 %>%
year_to_date2 filter(Line %in% c(38, 39, 40, 41)) %>%
+ geom_line(aes(x = date, y = value, color = paste0(Line))) +
ggplot annotate("text", x = as.Date("2006-12-31"), y = 0.55, label= "Apport > 15% ", color = viridis(5)[1]) +
annotate("text", x = as.Date("2016-12-31"), y = 0.17, label= "5% < Apport < 15%", color = viridis(5)[2]) +
annotate("text", x = as.Date("2015-12-31"), y = 0.27, label= "0% < Apport < 5%", color = viridis(5)[3]) +
annotate("text", x = as.Date("2017-12-31"), y = 0.08, label= "Apport < 0% ", color = viridis(5)[4]) +
theme_minimal() + xlab("") + ylab("Part des emprunteurs (%)") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = "none")
Taux d’effort
Legend
Code
<- as.Date("2020-12-31")
date0 <- as.Date("2021-12-31")
date1 %>%
as124 %>%
year_to_date2 filter(Line %in% c(31, 32, 33, 34)) %>%
mutate(Variable = factor(Variable,
levels=c("Taux d'effort < 20%",
"20% < Taux d'effort < 30%",
"30% < Taux d'effort ≤ 35%",
"Taux d'effort > 35%"))) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Part des emprunteurs (%)") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())
Nouvelle
Code
<- as.Date("2020-12-31")
date0 <- as.Date("2021-12-31")
date1 %>%
as124 %>%
year_to_date2 filter(Line %in% c(31, 32, 33, 34)) %>%
mutate(Variable = factor(Variable,
levels=c("Taux d'effort < 20%",
"20% < Taux d'effort < 30%",
"30% < Taux d'effort ≤ 35%",
"Taux d'effort > 35%"))) %>%
+ geom_line(aes(x = date, y = value, color = Variable)) +
ggplot theme_minimal() + xlab("") + ylab("Part des emprunteurs (%)") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank())