NY.GDP.PETR.RT.ZS %>%
left_join(iso2c, by = "iso2c") %>%
group_by(iso2c, Iso2c) %>%
rename(value = `NY.GDP.PETR.RT.ZS`) %>%
mutate(value = round(value, 2)) %>%
summarise(Nobs = n(),
`Year 1` = first(year),
`Rent 1 (%)` = first(value),
`Year 2` = last(year),
`Rent 2 (%)` = last(value)) %>%
arrange(-`Rent 2 (%)`) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Iso2c))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("NO", "AO", "MX", "GA")) %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.9),
legend.direction = "horizontal") +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("KW", "IQ", "LY")) %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
theme(legend.title = element_blank(),
legend.position = c(0.5, 0.9),
legend.direction = "horizontal") +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 100, 5),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("CN", "FR", "DE")) %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 2),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("US", "GB", "ES")) %>%
left_join(iso2c, by = "iso2c") %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("AR", "CL", "VE")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "VE", "Venezuela", Iso2c)) %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 5),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
NY.GDP.PETR.RT.ZS %>%
filter(iso2c %in% c("GR", "HK", "MX")) %>%
left_join(iso2c, by = "iso2c") %>%
mutate(Iso2c = ifelse(iso2c == "HK", "Hong Kong", Iso2c)) %>%
year_to_date %>%
mutate(value = NY.GDP.PETR.RT.ZS/100) %>%
left_join(colors, by = c("Iso2c" = "country")) %>%
ggplot(.) + geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 2),
labels = scales::percent_format(accuracy = 1)) +
xlab("") + ylab("Oil rents (% of GDP)")
library(WDI)
library(ggthemes)
library("rnaturalearth")
library(viridis)
library(WDI)
asia_map <- ne_countries(scale = "medium", continent = 'Asia', returnclass = "sf")
nat_rents = WDI(indicator='NY.GDP.TOTL.RT.ZS', start=2016, end=2018)
asia_rents <- merge(asia_map, nat_rents, by.x = "iso_a2", by.y = "iso2c", all = TRUE)
map_2017 <- asia_rents[which(asia_rents$year == 2017),]
nat_rent_graph <- ggplot(data = map_2017) +
geom_sf(aes(fill = NY.GDP.TOTL.RT.ZS),
position = "identity") +
labs(fill ='Natural Resource Rents as % GDP') +
scale_fill_viridis_c(option = "viridis")
nat_rent_graph + theme_map()
library(WDI)
library(ggthemes)
library("rnaturalearth")
library(viridis)
library(WDI)
asia_map <- ne_countries(scale = "medium", continent = 'South America', returnclass = "sf")
nat_rents = WDI(indicator='NY.GDP.TOTL.RT.ZS', start=2016, end=2018)
asia_rents <- merge(asia_map, nat_rents, by.x = "iso_a2", by.y = "iso2c", all = TRUE)
map_2017 <- asia_rents[which(asia_rents$year == 2017),]
nat_rent_graph <- ggplot(data = map_2017) +
geom_sf(aes(fill = NY.GDP.TOTL.RT.ZS),
position = "identity") +
labs(fill ='Natural Resource Rents as % GDP') +
scale_fill_viridis_c(option = "viridis")
nat_rent_graph + theme_map()
library(WDI)
library(ggthemes)
library("rnaturalearth")
library(viridis)
library(WDI)
asia_map <- ne_countries(scale = "medium", continent = 'North America', returnclass = "sf")
nat_rents = WDI(indicator='NY.GDP.TOTL.RT.ZS', start=2016, end=2018)
asia_rents <- merge(asia_map, nat_rents, by.x = "iso_a2", by.y = "iso2c", all = TRUE)
map_2017 <- asia_rents[which(asia_rents$year == 2017),]
nat_rent_graph <- ggplot(data = map_2017) +
geom_sf(aes(fill = NY.GDP.TOTL.RT.ZS),
position = "identity") +
labs(fill ='Natural Resource Rents as % GDP') +
scale_fill_viridis_c(option = "viridis")
nat_rent_graph + theme_map()
library(WDI)
library(ggthemes)
library("rnaturalearth")
library(viridis)
library(WDI)
asia_map <- ne_countries(scale = "medium", continent = 'Europe', returnclass = "sf")
nat_rents = WDI(indicator='NY.GDP.TOTL.RT.ZS', start=2016, end=2018)
asia_rents <- merge(asia_map, nat_rents, by.x = "iso_a2", by.y = "iso2c", all = TRUE)
map_2017 <- asia_rents[which(asia_rents$year == 2017),]
nat_rent_graph <- ggplot(data = map_2017) +
geom_sf(aes(fill = NY.GDP.TOTL.RT.ZS),
position = "identity") +
labs(fill ='Natural Resource Rents as % GDP') +
scale_fill_viridis_c(option = "viridis")
nat_rent_graph + theme_map()