Balance sheets for non-financial assets, 2019 archive - SNA_TABLE9B_ARCHIVE

Data - OECD

Layout

  • OECD Website. html

Nobs - Javascript

Code
SNA_TABLE9B_ARCHIVE %>%
  left_join(SNA_TABLE9B_ARCHIVE_var %>% pluck("TRANSACT"), by = c("TRANSACT" = "id")) %>%
  rename(`TRANSACT Description` = label) %>%
  group_by(TRANSACT, `TRANSACT Description`, SECTOR) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Data Structure

Code
SNA_TABLE9B_ARCHIVE_var %>%
  pluck("VAR_DESC") %>%
  {if (is_html_output()) print_table(.) else .}
id description
LOCATION Country
TRANSACT Transaction
SECTOR Sector
MEASURE Measure
TIME Year
OBS_VALUE Observation Value
TIME_FORMAT Time Format
OBS_STATUS Observation Status
UNIT Unit
POWERCODE Unit multiplier
REFERENCEPERIOD Reference period

TRANSACT

Code
SNA_TABLE9B_ARCHIVE %>%
  left_join(SNA_TABLE9B_ARCHIVE_var %>% pluck("TRANSACT"), by = c("TRANSACT" = "id")) %>%
  rename(`TRANSACT Description` = label) %>%
  group_by(TRANSACT, `TRANSACT Description`) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

SECTOR

Code
SNA_TABLE9B_ARCHIVE %>%
  left_join(SNA_TABLE9B_ARCHIVE_var %>% pluck("SECTOR"), by = c("SECTOR" = "id")) %>%
  rename(`SECTOR Description` = label) %>%
  group_by(SECTOR, `SECTOR Description`) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
SECTOR SECTOR Description Nobs
NS1 Total economy 14741
NS11 Non-financial corporations 10482
NS14_S15 Households and non-profit institutions serving households 10477
NS13 General government 10409
NS12 Financial corporations 10112
NS14 Households 2070
NS15 Non-profit institutions serving households 2070

Ex 1: Non-produced assets

Code
SNA_TABLE9B_ARCHIVE %>%
  filter(grepl("N2", TRANSACT) | TRANSACT == "B1_GE") %>%
  left_join(SNA_TABLE9B_ARCHIVE_var %>% pluck("TRANSACT"), by = c("TRANSACT" = "id")) %>%
  rename(`TRANSACT Description` = label) %>%
  group_by(LOCATION, TRANSACT, `TRANSACT Description`, SECTOR) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}